
ECS 120: Theory of Computation Handout notes1
UC Davis — Phil Rogaway June 2, 2010

The Cook-Levin Theorem

Recall that a language L is NP-complete if L ∈ NP and if L is at least as hard as every language in NP:
for all A ∈ NP, we have that A ≤P L. Our first NP-complete language is the hardest to get, since we
have no NP-hard language to reduce to it. A first NP-complete language is provided by the Cook-Levin
theorem, due to Stephen Cook (1971, USA/Canada) and, independently, Leonid Levin (1973, but the
subject of lectures, in Russia, for some years before). The particular NP-complete problem we select is not
of great importance; we will use SAT. What is more important is that we show some particular language
NP-complete so, using it, we can start populating our universe with other known-to-be-NP-complete
problems.

Theorem [Cook-Levin]. SAT is NP-complete.

To prove the theorem we must show that SAT∈ NP, which we know, and that, for any A ∈ NP, we can
poly-time reduce A to SAT. So fix A ∈ NP, some NP-complete language. Fix M = (Q,Σ,Γ, δ, q0, qA, qR),
a verifier that accepts A. Fix p(n), a polynomial that upperbounds the running time of M : the number of
steps TIMEM (wt c) that M(wt c) takes is always less than p(n), where n = |w| and c ∈ Γ∗ is arbitrary.
We know that

• w ∈ A⇒ (∃ c)M(w t c) accepts

• w 6∈ A⇒ (∀ c)M(w t c) rejects

We haven’t been very explicit about where the certificate c is drawn from. We may consider it to be an
element of Γ∗. In fact, given our bound on the running time of A, we may assume that c ∈ Γp(n)−1−n.
Strings longer than this will not even have their rightmost characters read.

Nor our job is to, by polynomial-time transformation, map w ∈ Σ∗ to a Boolean formula φ such that
w ∈ A iff φ is satisfiable. Our transformation will depend on machine M and polynomial p. To describe
φ, fix w ∈ Σ∗. Let n = |w|.

First, we specify the variables that φ will use. These are

1. Qq,t for each q ∈ Q and 1 ≤ t ≤ p(n).

Variable Qq,t is supposed to mean that machine M is in state q at time t.

2. Hi,t for each 1 ≤ i ≤ p(n), 1 ≤ t ≤ p(n).

Variable Hi,t is supposed to mean that the head of the machine M is at position i at time t.

3. Xa,i,t for each a ∈ Γ, 1 ≤ i ≤ p(n), 1 ≤ t ≤ p(n).

Variable Xa,i,t is supposed to mean that there is an a-character at position i of the tape at time t.

Now “all” we have to do is to write a collection of Boolean constraints that collectively capture the idea
that our machine M , on input w t c (for the given w and an arbitrary c), computes correctly and winds
up in an accepting state. If you AND together all the constraints you get a Boolean formula that will be
satisfiable iff w ∈ L. Lets show how some of these constraints look.

2 ECS 120 Handout notes1: The Cook-Levin Theorem

1. The machine starts off in its start state:

Qq0,1 ⇔ 1

2. The head starts off at the left edge:
H1,1 ⇔ 1

3. The tape starts off with a w t c written on it:

Xw[i],i,1 ⇔ 1 for all 1 ≤ i ≤ n
Xt,n+1,1 ⇔ 1∨
a∈Γ

Xa,i,1 ⇔ 1 for each n+ 2 ≤ i ≤ p(n)

4. You end up in an accept state. ∨
1≤t≤p(n)

QqA,t

5. Each step of the machine is computed according to the transition.

In particular, if δ(q, a) = (q′, b, R) then

(Qq,t ∧Hi,t ∧Xa,i,t)⇒ (Qq′,t+1 ∧Hi+1,t+1 ∧Xb,i,t+1) for all 1 ≤ i < p(n), 1 ≤ t < p(n)

Similarly define the following constraints for when δ(q, a) = (q′, b, L). Here it is convenient to
assume that M never tries to move its head to the left of the left edge of the tape, which is without
loss of generality.

(Qq,t ∧Hi,t ∧Xa,i,t)⇒ (Qq′,t+1 ∧Hi−1,t+1 ∧Xb,i,t+1) for all 1 ≤ i < p(n), 1 ≤ t < p(n)

Finally, if the head is not the immediate vicinity, the tape contents should simply be copied:

(Hi,t ∧Xa,j,t)⇒ Xa,i,t+1) for all 1 ≤ i, j < p(n), i 6= j, 1 ≤ t < p(n)

6. If you’re in one state, you’re not in another; if your head is somewhere, it’s not somewhere else; if
something is written on a tape cell, nothing else isn’t written there.

Qq,t → Qq′,t for all q, q′ ∈ Q, q 6= q′, 1 ≤ t ≤ p(n)

Hi,t → Hj,t for all 1 ≤ i, j ≤ p(n), i 6= j, 1 ≤ t ≤ p(n)

Xa,i,t → Xb,i,t for all a, b ∈ Γ, a 6= b, 1 ≤ i ≤ p(n), 1 ≤ t ≤ p(n)

New we should verify the following: (1) The transformation is polynomial time. This is clear.
Of course the polynomial depends on p(n), which depends on L. That is as one would expect.
(2) if w ∈ L(M) then φ is satisfiable. This is easy; the computation of M on a certificate that
demonstrates w ∈ L provides a satisfying assignment of φ. (3) if φ is satisfiable, then w ∈ L(M).
This is the most tricky part. We read the certificate c that demonstrates w ∈ L off of the satisfying
assignment of φ. We have to have added enough constraints in our formula that a satisfying
assignment really does correspond to possessing a certificate c and then performing a correct,
accepting computation of M on input w t c.

