ECS 120: Theory of Computation Handout notesl
UC Davis — Phil Rogaway April 20, 2010

A Counting Problem

Last time I described various decision questions concerning regular languages: do two DFAs accept the
same language, does a given regular expressions denote ¥*, and so on. But not everything we’d like to
figure out is a decision question. Today I'd like to show an example of a counting problem dealing with
regular languages.

Here is the problem: given a DFA M and a number n, how many strings of length n are in L(M)? In
other words, what is the cardinality of L(M) N X"?

One approach is just to generate all strings of length n and then test, for each, if it is in L(M). This
works, but it takes exponential time—at least 2™ time if |X| > 2. Is there a more efficient way?

A more efficient solution uses dynamic programming. Don’t let the word scare you. All I mean is that
we should think recursively.

Here’s a recursive decomposition for the problem. Fix a DFA M = (Q, X%, d, qo, F') and the number n.
Then let’s define

f(g,i) = the number of strings = € %% such that S(qo,x) =gq

for any ¢ € Q and ¢ > 0. Here § is the extension of § to the domain @ x X*, as we defined earlier in our
class. So f(g,) counts the number of ways you get to state ¢, starting at the start state, by processing
strings of length 1.

What I'd like you to notice is that we can write a simple recursive expression for f. Namely, as a base
case, note that

|1 ifg=q
f(QaO)_{ 0 ifq+#qo

since one string of length 0, the empty string, takes you from state gy to go, while no string of length 0
takes you from gg to some other state ¢q. In addition, for ¢ > 1 we have that

where the sum is taken over all p € @ such that §(p,a) = g for some a. If there are j > 1 characters a
such that 6(p, a) = ¢, then we mean to include all j times in the sum above. Formally, you could say that
the sum is actually over (p,a) € @ x ¥ such that §(p,a) = ¢q. The explanation for the recursive equation
above is this: the number of ways to reach ¢ from ¢y by a path of length ¢ if just the number of ways
to reach potential predecessor states from gy by a path of length ¢ — 1, where a “predecessor state” is a
state p and a character a such that d(p,a) = q.

Our algorithm, then is just to compute f(p,) for all p € @ and 1 < i < n. The answer to the originally
asked question will then be

answer = Z f(g,n) .

qeF

Let’s do a little example, answering how many strings of length n = 6 the following DFA M accepts:

2 ECS 120 Handout notesl: A Counting Problem

i [fqo,4) | Flqr,0) | flagz,9) |
0 1 0 0

1 0 1 1

2 1 2 1

3 1 4 3

4 3 8 5

5 5 16 11

6 11 32 21

The first row is filled in according to the base case. After that, for this DFA, the leftmost entry of each
row is the rightmost entry of the prior row, while the middle entry of each row is the sum of all three
entries in the prior rows, and the rightmost entry of each row is the sum of the prior two entries in the
prior row. Note that, as expected (why?), the sum of entries in row i is 2°. The answer to the originally
asked question is 21, the sum of the entries corresponding to final states for row-6. (Note: in class I
finalized state qo, too, so the answer was then 11 + 21 = 32.)

Let’s build on the above to solve a related problem: instead of counting the number of strings of a given
length in L(M), let’s try to uniformly generate a random string of length n that’s in L(M). This could
be done as follows—illustrated again for the example above. To uniformly generate a random string of
length n = 6, uniformly choose a random number z between 1 and 21 (since we know there are 21 strings
of length 6 in the language). Suppose, for example, we choose x = 11. Then we would like to generate
the 11th string of length 6 in the language, with respect to some arbitrary but fixed way of numbering
the 21 strings in the language of length 6. Well, where do the 21 strings come from? Consulting our chart
and the DFA, some 5 of them end at ¢y with a final transition of b from state gy, while another 16 of
them end at go with a final transition of a from state ¢;. We want the 11th string, so we could consider
the first five choices to be the b-terminal strings from gy and the next 16 choices to be the a terminal
strings from ¢;. So the final character for us is a and we now want to 6th (6 = 11 — 5) string of length
5 that would terminate at ¢;. Continue unwinding in this way to recover the entire string. At this point
we have shown how to solve the random-generation problem.

Let’s look at one final counting problem: count the number of strings of length n in L(«) for some regular
expression a. We could convert a to a DFA and use the procedure we have developed already, but the
conversion will run in exponential time. Is there a more efficient approach? The answer seems to be no.
Nobody has developed such a procedure, and most people would find it surprising if such a procedure
was found to exist.

