Problem Set 1 – Due Tuesday, April 6, 2010

Instructions: Write up your solutions as clearly and succinctly as you can. Typeset solutions, particularly in IAT_EX , are always appreciated. Don't forget to acknowledge anyone with whom you discussed problems. Recall that homeworks are due at 4:40 pm sharp on Tuesdays, in the turn-in box in Kemper Hall, room #2131.

- **Problem 1.** Show that at a party of 10 people, there are at least two people who have the same number of friends present at the party. Assume (however unrealistically) that friendship is symmetric and anti-reflexive. *Hint*: Carefully use the pigeonhole principle.
- **Problem 2.** Let G = (V, E) be a graph (the "usual" sort, being nonempty, finite, undirected, having no-self loops and no multiple edges). Prove (by giving a convincing argument) or disprove (by giving a smallest counter-example) that the following are equivalence relations for any graph G.

Part A. Let $x, y \in V$. Say that $x \sim y$ if there is a path in G from x to y (that is, a sequence of vertices $x_1, \ldots, x_n \in V$ $(n \ge 1)$ where each $\{x_i, x_{i+1}\} \in E$ and $x = x_1$ and $y = x_n$).

Part B. Let $x, y \in V$. Say that $x \sim y$ if x is adjacent to y (that is, $\{x, y\} \in E$).

Part C. Let $x, y \in V$. Say that $x \sim y$ if x = y or $\{x, y\} \in E$ or there are two vertex-disjoint paths from x to y (paths x_1, \ldots, x_n and $x'_1, \ldots, x'_{n'}$ where $x_1 = x'_1 = x$ and $x_n = x'_{n'} = y$ and $\{x_2, \ldots, x_{n-1}\} \cap \{x'_2, \ldots, x'_{n'-1}\} = \emptyset$.

Part D. Let $x, y \in V$. Say that $x \sim y$ if there is a path from x to y and this remains so even if one removes any edge $e \in E$.

Problem 3. State whether the following propositions are true or false, explaining each answer.

- **Part A.** \emptyset is a language.
- **Part B.** \emptyset is a string.
- **Part C.** ϵ is a language.
- **Part D.** ϵ is a string.
- Part E. Every language is infinite or has an infinite complement.
- Part F. Some language is infinite and has an infinite complement.
- Part G. The set of real numbers is a language.
- Part H. There is a language that is a subset of every language.
- Part I. The Kleene-star (Kleene closure) of a language is always infinite.
- Part J. The concatenation of an infinite language and a finite language is always infinite.
- **Part K.** There is an infinite language L containing the emptystring and such that L^i is a proper subset of L^* for all $i \ge 0$.

Problem 4. Give DFAs for the following languages. Assume an alphabet of $\Sigma = \{0, 1\}$.

(a) The set of all strings with 010 as a substring.

- (b) The set of all strings which do not have 010 as a substring.
- (c) The set of all strings which have an even number of 0's or an even number of 1's.
- (d) The complement of $\{0, 01\}^*$.
- (e) The binary encodings of numbers divisible by 3: $\{0\}^* \circ \{\varepsilon, 11, 110, 1001, 1100, 1111, \ldots\}$.

Problem 5 State whether the following propositions are true or false, proving each answer.

Part A. Every DFA-acceptable language can be accepted by a DFA with an even number of states.

Part B. Every DFA-acceptable language can be accepted by a DFA whose start state is never visited twice.

Part C. Every DFA-acceptable language can be accepted by a DFA no state of which is ever visited more than once.

Part D. Every infinite DFA-acceptable language can be accepted by a DFA that, for some string $x \in L$, visits the start state twice on input x.

Part E. Every DFA-acceptable language can be accepted by a DFA with only a single final state.

Problem 6. Recall the DIOPHANTINE EQUATION problem: given a multivariate polynomial P with integer coefficients (e.g., $P(x, y, z) = x^2 - 5xy + 3yz^2 + xyz$), decide whether or not P has an integer root. I claimed without proof that there is no algorithm to answer this question. But suppose I provide you with a "magic box" that answers the question. In a single computational step, it says *yes* or *no* according to whether or not P has a root. Given such a magic box, describe an algorithm that *finds* an integer root of any multivariate polynomial that has one (and the algorithm answers *No Root* if the polynomial provided doesn't have an integer root).