Problem Set 8 – Due Tuesday, May 25, 2010, at 4:15 pm

- **Problem 1.** Classify each of the following languages as either (a) **recursive**—I see how to decide this language; (b) **r.e.**—I don't see how to decide this language, but I can see a procedure to accept this language; (c) **co-r.e.**—I don't see how to decide this language, but I can see a procedure to accept the complement of the language; or (d) **neither**: I don't see how to accept this language nor its complement. No justification is needed for your answers.
- **Part A.** $\{\langle M \rangle : M \text{ is a TM that accepts some string of prime length}\}.$
- **Part B.** $\{\langle M \rangle : M \text{ is a C-program that halts on } \langle M \rangle \}.$
- **Part C.** $\{\langle G \rangle : G \text{ is a CFG and } G \text{ accepts an odd-length string}\}.$
- **Part D.** $\{\langle M \rangle : M \text{ is a TM and } M \text{ has } 150 \text{ states} \}.$
- **Part E.** $\{\langle M \rangle : M \text{ is a TM and } L(M) = L(M)^* \}.$
- **Part F.** $\{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset\}.$
- **Part G.** $\{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is r.e. } \}.$
- **Part H.** $\{\langle G_1, G_2 \rangle : G_1 \text{ and } G_2 \text{ are CFGs and } L(G_1) = L(G_2)\}.$
- **Part I.** $\{\langle M \rangle : M \text{ is a TM and } M \text{ will visit state } q_{25} \text{ when run on some input } x\}.$
- **Part J.** $\{\langle M \rangle : M \text{ is a TM and } M \text{ that uses at most 17 tape cells when run on blank tape}\}.$
- Problem 2. Prove whether each of the following languages is recursive, r.e. but not recursive, co-r.e. but not recursive, or neither r.e. nor co-r.e.
- **Part A.** $L = \{\langle M, w \rangle : M \text{ is a TM that uses at most 17 tape squares when run on } w\}.$

Part B. $L = \{ \langle M, k \rangle : M \text{ is a TM that accepts at least one string of length } k \}.$

Part C. $L = \{ \langle M, k \rangle : M \text{ is a TM that diverges (loops) on at least one string of length } k \}.$

Part D. $L = \{ \langle M, k \rangle : M \text{ is a TM that accepts a string of length } k \text{ and diverges on a string of length } k \}$. Assume that the underlying alphabet has at least two characters.

Part E. $L = \{ \langle M \rangle : M \text{ is a TM that accepts some palindrome} \}.$

Problem 3.

Part A. Give two languages L_1 and L_2 , each r.e. but not recursive, with empty intersection.

Part B. Give two languages L_1 and L_2 , each r.e. but not recursive, with union Σ^* .

Part C. Are there languages L_1 and L_2 meeting conditions (A) and (B) simultaneously? Why or why not?