
Applications of Deterministic Finite Automata

Eric Gribkoff
ECS 120
UC Davis

Spring 2013

1 Deterministic Finite Automata

Deterministic Finite Automata, or DFAs, have a rich background in terms of the
mathematical theory underlying their development and use. This theoretical foun-
dation is the main emphasis of ECS 120’s coverage of DFAs. However, this handout
will focus on examining real-world applications of DFAs to gain an appreciation of
the usefulness of this theoretical concept. DFA uses include protocol analysis, text
parsing, video game character behavior, security analysis, CPU control units, natural
language processing, and speech recognition. Additionally, many simple (and not
so simple) mechanical devices are frequently designed and implemented using DFAs,
such as elevators, vending machines, and traffic-sensitive traffic lights.

As the examples below will demonstrate, DFAs naturally lend themselves to con-
cisely representing any system which must maintain an internal definition of state.
Our examples begin with vending machines, which need to remember how much
money the user has input, and continue to more complicated examples of video game
agent AI and communication protocols. As our final example, we will consider the
incorporation of finite state machines into the Apache Lucene open-source search
engine, where they are used to implement search term auto-completion.

Formally, a deterministic finite automaton is a 5-tuple (Q,Σ, δ, q0, F) such that:

1. Q is a finite set called the states

2. Σ is a finite set called the alphabet

3. δ : Q× Σ→ Q is the transition function

1

4. q0 ∈ Q is the start state

5. F ⊆ Q is the set of accept states

We also discuss Mealy machines, which add to the expressiveness of DFAs by
producing output values at each transition, where the output depends on the current
state and input. Rather than accepting or rejecting strings, Mealy machines map an
input string to an output string. They can be thought of as functions that receive a
string and produce a string in response.

Formally, a Mealey machine is a 6-tuple (Q,Σ,Γ, δ, ω, q0) such that:

1. Q,Σ, δ, and q0 are defined as in a DFA.

2. Γ is a finite set called the output alphabet

3. ω : Q× Σ→ Γ is the output function

2 A Non-Exhaustive List of DFA Applications

• Vending Machines

• Traffic Lights

• Video Games

• Text Parsing

• Regular Expression Matching

• CPU Controllers

• Protocol Analysis

• Natural Language Processing

• Speech Recognition

2

3 Vending Machines

Figure 1 presents a DFA that describes the behavior of a vending machine which
accepts dollars and quarters, and charges $1.25 per soda. Once the machine receives
at least $1.25, corresponding to the blue-colored states in the diagram, it will allow
the user to select a soda. Self-loops represent ignored input: the machine will not
dispense a soda until at least $1.25 has been deposited, and it will not accept more
money once it has already received greater than or equal to $1.25.

To express the DFA as a 5-tuple, the components are defined as follows:

1. Q = {$0.00, $0.25, $0.50, $0.75, $1.00, $1.25, $1.50, $1.75, $2.00} are the states

2. Σ = {$0.25, $1.00, select} is the alphabet

3. δ, the transition function, is described by the state diagram.

4. q0 = $0.00 is the start state

5. F = ∅ is the set of accept states

3

$0.00start $0.25 $0.50 $0.75

$1.00 $1.25 $1.50 $1.75

$2.00

$0.25 $0.25 $0.25

$0.25

$0.25

$1.00 $1.00 $1.00 $1.00

$1.00

select select select select

select

$0.25, $1.00 $0.25, $1.00 $0.25, $1.00

$0.25, $1.00

select
select select

select

Figure 1: Vending Machine State Diagram

4

4 AI in Video Games: Pac-Man’s Ghosts

Figure 2: Screenshot of a Pacman Clone

Finite state machines lend themselves to representing the behavior of computer-
controller characters in video games. The states of the machine correspond to the
character’s behaviors, which change according to various events. These changes are
modeled by transitions in the state diagram. State machines are certainly not the
most sophisticated means of implementing artificially intelligent agents in games, but
many games include characters with simple, state-based behaviors that are easily and
effectively modeled using state machines.

Here we consider the classic game, Pac-Man. For those unfamiliar with the game-
play, Pac-Man requires the player to navigate through a maze, eating pellets and
avoiding the ghosts who chase him through the maze. Occasionally, Pac-Man can
turn the tables on his pursuers by eating a power pellet, which temporarily grants
him the power to eat the ghosts. When this occurs, the ghosts’ behavior changes,
and instead of chasing Pac-Man they try to avoid him.

The ghosts in Pac-Man have four behaviors:

1. Randomly wander the maze

5

2. Chase Pac-Man, when he is within line of sight

3. Flee Pac-Man, after Pac-Man has consumed a power pellet

4. Return to the central base to regenerate

These four behaviors correspond directly to a four-state DFA. Transitions are
dictated by the situation in the game. For instance, a ghost DFA in state 2 (Chase
Pac-Man) will transition to state 3 (Flee) when Pac-Man consumes a power pellet.

For a further discussion of state machines for game AI, see http://research.

ncl.ac.uk/game/mastersdegree/gametechnologies/aifinitestatemachines/.

Wander the Mazestart Chase Pac-Man

Return to Base Flee Pac-Man

Spot
Pac-Man

Lose
Pac-Man

Pac-Man Eats
Power Pellet

Power Pellet
Expires

Pac-Man Eats
Power Pellet

Eaten by
Pac-Man

Reach
Central Base

Figure 3: Behavior of a Pac-Man Ghost

5 Internet Protocols: TCP as a DFA

Internet protocols also lend themselves to descriptions as DFAs. The state diagram
below represents a simplified version of the Transmission Control Protocol (TCP).

6

http://research.ncl.ac.uk/game/mastersdegree/gametechnologies/aifinitestatemachines/
http://research.ncl.ac.uk/game/mastersdegree/gametechnologies/aifinitestatemachines/

The state machine in Figure 4 describes the “life stages” of a TCP connection. A
connection between two computers begins in the closed state. Following a series of
signals, described by the transition arcs of the diagram, the two machines reach the
established state where communication can proceed. Once completed, the transition
arcs describe the process whereby the connection returns to the closed state.

See http://www.tcpipguide.com/free/ for further discussion of the TCP proto-
col, and http://www.texample.net/tikz/examples/tcp-state-machine/ for the
source used to generate the state machine diagram.

Representation of complex protocols, such as TCP or Transport Layer Security
(TLS), as DFAs helps in understanding the protocols and aids implementations, as
the state diagrams clearly illustrate allowed and disallowed transitions between states.
In addition, finite state security analysis has been used to examine the security of
protocols such as SSL and TLS.

7

http://www.tcpipguide.com/free/
http://www.texample.net/tikz/examples/tcp-state-machine/

CLOSEDstart

LISTEN

SYN SENTSYN RCVD

ESTABLISHED

FIN WAIT 1

FIN WAIT 2

CLOSE WAIT

CLOSING
LAST ACK

TIME WAIT

Passive open Close

SYN/SYN + ACK Send/SYN

Timeout/RST
Close

Active open/SYN

SYN/SYN + ACK

Close/FIN

ACK SYN + ACK/ACK

Close/FIN FIN/ACK

ACK

ACK

FIN +
ACK-
/ACK

FIN/ACK

ACK

Close/FIN

ACK

Timeout after two maximum
segment lifetimes (2*MSL)

Figure 4: TCP State Diagram

6 Auto-Complete in Apache Lucene

Simple extensions to the DFA definition can greatly expand their power while pre-
serving their ability to concisely encapsulate ideas and processes. One such extension
is the finite state transducer (FST), which enhances the DFA definition by adding an
output capability. Mealy machines, defined above, are a type of FST.

8

The figure below illustrates the use of a Mealy machine to index strings in a
sorted array. Words are matched to their index in the search term data structure
by processing the words through the Mealy machine and summing the output values
encountered. (Empty outputs are omitted from the diagram.)

Figure 5: FST for Text Lookups

This Mealy machine proceses the words in the ordered set {mop,moth, pop, star, stop, top}
to produce the numbers corresponding to their alphabetical order within the set. Con-
sider stop, the fifth (index = 4) element of the set. Beginning with the start state, we
follow the s arc. This arc has associated output 3. Then we follow the t arc, with no
output. Then we follow the o arc, with output 1. Our sum currently stands at four.
Then we follow the p arc, with no output, and reach the end of the word. Our sum
gives us the index of stop: 4.

The advantage of the FST approach is that the common prefixes and suffixes
of stored terms are shared, greatly reducing the memory footprint required for text
lookups.

The Apache Lucene project used a Mealy machine to dramatically decrease the
memory footprint of their auto-complete search term feature. By using an FST
to conduct lookups in its search term index, the Apache Lucene project is able to
store the entire index in memory, resulting in much faster lookups. More informa-
tion on the approach adopted by the Lucene project can be found at http://blog.

mikemccandless.com/2010/12/using-finite-state-transducers-in.html.

9

http://blog.mikemccandless.com/2010/12/using-finite-state-transducers-in.html
http://blog.mikemccandless.com/2010/12/using-finite-state-transducers-in.html

	Deterministic Finite Automata
	A Non-Exhaustive List of DFA Applications
	Vending Machines
	AI in Video Games: Pac-Man's Ghosts
	Internet Protocols: TCP as a DFA
	Auto-Complete in Apache Lucene

