Problem Set 3 - Due Friday, April 19, 2013

Problem 1. For the following problems, do not "simplify" your work (except you should please not indicate unreachable states in any DFA) - show everything.

Using the procedure shown in class, convert the following NFA into a DFA for the same language.

Problem 2. Recall PS2, problem 4. We wanted to prove that the DFA-acceptable languages were closed under homomorphism, but this was awkward to do using the DFA-based definition of the DFAacceptable languages. Give a direct proof that the regular languages - the languages of regular expressions-are closed under homomorphisms. When I say to give a direct proof, I mean that you should not employ or even mention DFAs or NFAs: just stick with regular languages / regular expressions.

Problem 3 For any $n \geq 1$, let $L_{n}=\{0,1\}^{*}\{1\}\{0,1\}^{n}$. Prove that there is an NFA for L_{n} having $n+2$ states. Then prove that there is no DFA for L_{n} having $2^{n}-1$ states. Interpret the meaning of this result in plain English.

Problem 4 Let $\operatorname{Dbl}(L)=\left\{a_{1} a_{1} a_{2} a_{2} \cdots a_{n} a_{n} \in \Sigma^{*}: a_{1} a_{2} \cdots a_{n} \in L\right\}$. Prove that the DFA-acceptable languages are closed under Dbl.

Problem 5. Consider applying the product construction to NFAs $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ and $M_{2}=$ $\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ in order to show that the NFA-acceptable languages are closed under intersection.
(a) Formally specify the product machine $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$.
(b) Does the construction work? that is, is $L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$? Prove your result either way.

