Problem Set 4 - Due Friday, April 26, 2013

Problem 1. Using the procedure shown in class, convert the following NFA into a regular expression for the same language.

Problem 2. Imagine converting an n-state, c-character DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ into a (fully parenthesized, explicit concatenation symbol) regular expression α for the same language. Upper bound $|\alpha|$ in terms of n and c.

Problem 3. Using the pumping lemma, show that the following languages are not regular.
(a) $L=\left\{a^{2^{n}}: n \geq 0\right\}$.
(b) $L=\left\{w w w: w \in\{a, b\}^{*}\right\}$.
(c) $L=\left\{0^{n} 1^{m} 0^{n}: m, n \geq 0\right\}$.

Problem 4. Let $L=\left\{w \in\{0,1\}^{*}: w\right.$ is a palindrome $\}$. In class we proved, using the pumping lemma, that L is not regular. Prove the same result using the Myhill-Nerode theorem.

Problem 5. Define $A=\left\{x \in\{a, b, \sharp\}^{*}: x\right.$ contains an equal number of a 's and b 's or x contains consecutive $\sharp \mathrm{s}$ or consecutive letters $\}$.
(a) Can you use the pumping lemma to prove that A is not regular? Explain.
(b) Prove that A is not regular.

Problem 6. Are the following statements true or false? Either prove the statement or give a simple counter-example.
(a) If $L \cup L^{\prime}$ is regular then L and L^{\prime} are regular.
(b) If L^{*} is regular then L is regular.
(c) If $L L^{\prime}$ is regular then L and L^{\prime} are regular.
(d) If L and L^{\prime} agree on all but a finite number of strings, then one is regular iff the other is regular.
(e) If R is regular, L is not regular, and L and R are disjoint, then $L \cup R$ is not regular.
(f) If L differs from a non-regular language A by a finite number of strings F, then L itself is not regular.

