Problem Set 4 – Due Friday, April 26, 2013

Problem 1. Using the procedure shown in class, convert the following NFA into a regular expression for the same language.

Problem 2. Imagine converting an *n*-state, *c*-character DFA $M = (Q, \Sigma, \delta, q_0, F)$ into a (fully parenthesized, explicit concatenation symbol) regular expression α for the same language. Upper bound $|\alpha|$ in terms of *n* and *c*.

Problem 3. Using the pumping lemma, show that the following languages are not regular.

- (a) $L = \{a^{2^n}: n \ge 0\}.$
- (b) $L = \{www: w \in \{a, b\}^*\}.$
- (c) $L = \{0^n 1^m 0^n : m, n \ge 0\}.$
- **Problem 4.** Let $L = \{w \in \{0, 1\}^* : w \text{ is a palindrome}\}$. In class we proved, using the pumping lemma, that L is not regular. Prove the same result using the Myhill-Nerode theorem.
- **Problem 5.** Define $A = \{x \in \{a, b, \sharp\}^* : x \text{ contains an equal number of } a$'s and b's or x contains consecutive \sharp s or consecutive letters $\}$.
- (a) Can you use the pumping lemma to prove that A is not regular? Explain.
- (b) Prove that A is not regular.
- **Problem 6.** Are the following statements true or false? Either prove the statement or give a simple counter-example.
- (a) If $L \cup L'$ is regular then L and L' are regular.
- (b) If L^* is regular then L is regular.
- (c) If LL' is regular then L and L' are regular.
- (d) If L and L' agree on all but a finite number of strings, then one is regular iff the other is regular.
- (e) If R is regular, L is not regular, and L and R are disjoint, then $L \cup R$ is not regular.
- (f) If L differs from a non-regular language A by a finite number of strings F, then L itself is not regular.