Quiz 2

Neatly print: Firstname LASTNAME:

Instructions: No notes/books/gadgets/neighbors. Be mathematically precise.

- 1. You are given a first DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ with $|Q_1| = 10$ states, $|F_1| = 4$ of them final. You are given a second DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ with $|Q_2| = 10$ states, $|F_2| = 4$ of them final. Suppose you use the product construction to make a DFA $M = (Q, \Sigma, \delta, s, F)$ for $L(M_1) \oplus L(M_2)$, the symmetric difference of $L(M_1)$ and $L(M_2)$. It will have |Q| = states and |F| = of them will be final. Answers are numbers.
- 2. Recall that, for an NFA $M = (Q, \Sigma, \delta, q_0, F)$, we defined $\delta^*(q, x)$ so as to be the set of all states in Q reachable from q_0 by an x-labeled path. Given this, we could say that M accepts x if _______. In the matically rigorous statement involving δ^* and the components of M.]
- 3. In stating the Myhill-Nerode theorem, we associated to any regular language $L \subseteq \Sigma^*$ a binary relation ~ by saying that $x \sim x'$ if _______. [Make sure to include all needed quantifiers.] As an example, language $L = (0110)^*$ induces a relation ~ where $0 \not\sim 1$, because _______. The Myhill-Nerode theorem tells us that, if L is a language and ~ is the relation associated to it, then L is regular iff _______.
- 4. There is a 2^{n+1} -state **DFA** $M = (Q, \Sigma, \delta, q_0, F)$ for $L = \{0, 1\}^* \{1\} \{0, 1\}^n$: namely, let $Q = \{0, 1\}^{n+1}, q_0 = 0^{n+1}, F = \{1\} \{0, 1\}^n$, and $\delta(a_0 a_1 \cdots a_n, a) =$.
- 5. Draw the smallest **NFA** you can for the language $L = \{0, 1\}^* \{1\} \{0, 1\}^3$.

6. State the **pumping lemma** for regular languages. Be careful and explicit with all quantifiers.

- 7. Darken the correct box. No justification is required. If you're not sure, guess.
 - (a) **True False** Every language is infinite or has an infinite complement.
 - (b) **True False** The set of real numbers is a language.
 - (c) **True False** The Kleene closure (the star) of a language is always infinite.
 - (d) **True** False $L = \{w \in \{0,1\}^* : w \text{ has an equal number of 01's and 10's} \}$ is regular.
 - (e) **True False** If $L \subseteq \Sigma^*$ is not regular and $h: \Sigma \to \Sigma^*$ is a homomorphism, then h(L) is not regular.
 - (f) **True False** If A and B are regular and h is a homomorphism then $h(A \cup B) = h(A) \cup h(B)$.
 - (g) **True** False If $M = (Q, \Sigma, \delta, q_0, F)$ is an NFA and F = Q, then $L(M) = \Sigma^*$.
 - (h) **True** False An NFA $M = (Q, \Sigma, \delta, q_0, F)$ rejects a string x if there is a path from q_0 to a nonfinal state q of M and where the concatenation of the arc-labels along this path is x.
 - (i) **True False** If α is a regular expression then there is a regular expression β the language of which $\overline{L(\alpha)}$.
 - (j) **True** False For all $n \ge 0$, $L_n = \{a^i b^i : i \le n\}$ is regular.
 - (k) **True** False If L is regular, the even-length strings of L are regular.
 - (1) **True False** If the even-length strings L are regular and the odd-length strings of L are regular then L is regular.
- 8. If $L \subseteq \Sigma^*$ is a language, let $\operatorname{Prefix}(L) = \{x \in \Sigma^* : xy \in L \text{ for some } y \in \Sigma^*\}.$
 - (a) Is $\operatorname{Prefix}(L) \subseteq L$?

Is $\operatorname{Prefix}(L) \supseteq L$?

(b) Given a DFA $M = (Q, \Sigma, \delta, q_0, F)$, explain how to construct a DFA $M' = (Q', \Sigma, \delta', q'_0, F')$ for Prefix(L). Explain the construction in a sentence or two of simple English.