Quiz 2

Neatly print: Firstname LASTNAME:

Instructions: No notes/books/gadgets/neighbors. Be mathematically precise.

1. You are given a first DFA $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ with $\left|Q_{1}\right|=10$ states, $\left|F_{1}\right|=4$ of them final. You are given a second DFA $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ with $\left|Q_{2}\right|=10$ states, $\left|F_{2}\right|=4$ of them final. Suppose you use the product construction to make a DFA $M=$ ($Q, \Sigma, \delta, s, F)$ for $L\left(M_{1}\right) \oplus L\left(M_{2}\right)$, the symmetric difference of $L\left(M_{1}\right)$ and $L\left(M_{2}\right)$. It will have $|Q|=\square$ states and $|F|=\square$ of them will be final. Answers are numbers.
2. Recall that, for an NFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, we defined $\delta^{*}(q, x)$ so as to be the set of all states in Q reachable from q_{0} by an x-labeled path. Given this, we could say that M accepts x if \square . [mathematically rigorous statement involving δ^{*} and the components of M.]
3. In stating the Myhill-Nerode theorem, we associated to any regular language $L \subseteq \Sigma^{*}$ a binary relation \sim by saying that $x \sim x^{\prime}$ if \qquad [Make sure to include all needed quantifiers.] As an example, language $L=(0110)^{*}$ induces a relation \sim where $0 \nsim 1$, because \qquad The MyhillNerode theorem tells us that, if L is a language and \sim is the relation associated to it, then L is regular iff \qquad .
4. There is a 2^{n+1}-state DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ for $L=\{0,1\}^{*}\{1\}\{0,1\}^{n}$: namely, let $Q=\{0,1\}^{n+1}, q_{0}=0^{n+1}, F=\{1\}\{0,1\}^{n}$, and $\delta\left(a_{0} a_{1} \cdots a_{n}, a\right)=$ \qquad
5. Draw the smallest NFA you can for the language $L=\{0,1\}^{*}\{1\}\{0,1\}^{3}$.
6. State the pumping lemma for regular languages. Be careful and explicit with all quantifiers.
7. Darken the correct box. No justification is required. If you're not sure, guess.
(a) True False Every language is infinite or has an infinite complement.
(b) True False The set of real numbers is a language.
(c) True False The Kleene closure (the star) of a language is always infinite.
(d) True False $L=\left\{w \in\{0,1\}^{*}: w\right.$ has an equal number of 01's and 10's $\}$ is regular.
(e) True False If $L \subseteq \Sigma^{*}$ is not regular and $h: \Sigma \rightarrow \Sigma^{*}$ is a homomorphism, then $h(L)$ is not regular.
(f) True False If A and B are regular and h is a homomorphism then $h(A \cup B)=$ $h(A) \cup h(B)$.
(g) True False If $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is an NFA and $F=Q$, then $L(M)=\Sigma^{*}$.
(h) True False An NFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ rejects a string x if there is a path from q_{0} to a nonfinal state q of M and where the concatenation of the arc-labels along this path is x.
(i) True False If α is a regular expression then there is a regular expression β the language of which $\overline{L(\alpha)}$.
(j) True False For all $n \geq 0, L_{n}=\left\{a^{i} b^{i}: i \leq n\right\}$ is regular.
(k) True False If L is regular, the even-length strings of L are regular.
(l) True False If the even-length strings L are regular and the odd-length strings of L are regular then L is regular.
8. If $L \subseteq \Sigma^{*}$ is a language, let $\operatorname{Prefix}(L)=\left\{x \in \Sigma^{*}: x y \in L\right.$ for some $\left.y \in \Sigma^{*}\right\}$.
(a) Is $\operatorname{Prefix}(L) \subseteq L$?

Is $\operatorname{Prefix}(L) \supseteq L ?$
(b) Given a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, explain how to construct a DFA $M^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ for Prefix (L). Explain the construction in a sentence or two of simple English.

