Midterm Exam — Spring 2014

First name:	LAST NAME:	
Seat #:	Student ID #:	

Instructions:

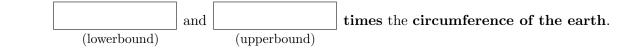
• The exam is closed-book, closed-notes, closed-devices, closed-neighbors. Anyone violating these rules will be fed to the saltwater crocodiles that live in the basement of Kemper.

- Write neatly. If the person grading can't easily read what you wrote, it's wrong.
- Where answers depend on conventions, use those of Sipser or the lectures.
- An "efficient" algorithm: one that runs in *polynomial*, not *exponential*, time.
- Good luck!

On page	you got	out of
1		50
2		45
3		45
4		60
Σ		200

Problem Z: For this question you should specify a **range** (ie, a [lowerbound, upperbound] pair) for which you have **98% confidence**—not more and not less—that the correct answer lies within the range you specify.

The average distance between the **earth** to the **moon** is between



1 Fill in the blank

Fill in the boxes. All answers are numbers.

1. A DFA $M = (Q, \Sigma, \delta, q_0, F)$ has $ Q = 10$ states and $ \Sigma = 5$ characters. Then there are			
points in the domain of δ and points in the range of δ .			
An NFA $M = (Q, \Sigma, \delta, q_0, F)$ has $ Q = 10$ states and $ \Sigma = 5$ characters. Then there are			
points in the domain of δ and points in the range of δ .			
A PDA $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ has $ Q = 10$ states and $ \Sigma = 2$ characters in the input alphabet			
and $ \Gamma = 4$ characters in the tape alphabet. Then there are points in the			
domain of δ and points in the range of δ .			
2. You are given an NFA $M = (Q, \Sigma, \delta, q_0, F)$ with $ Q = 100$ states, operating on $ \Sigma = 2$ characters, and employing $ F = 10$ final states.			
If we construct from M an NFA for $(L(M))^R$ it will have			
Alternatively, if we construct from M an NFA for $\overline{L(M)}$ by combining procedures seen in class, it will have states.			
3. A CNF (Chomsky-Normal Form) CFG $G = (V, \Sigma, R, S)$ has 7 variables, 6 terminals, 5 rules of the form $A \to BC$, and 8 rules of the form $A \to a$. Using the procedure shown in class and in your book, convert G to a PDA M that allows one to push an arbitrary number of symbols onto			
the stack in one transition. Then M will have $ Q = $ states . If, instead, we allow M to push only one symbol onto the stack at a time (which was our original convention),			
then the construction will need to have $ Q = $ states.			
4. As per PS5, problem 5, there's a natural conversion of a DFA $M = (Q, \Sigma, \delta, q_0, F)$ into a context-free grammar $G = (V, \Sigma, R, S)$ for $L(M)$. Suppose that M has $ Q = 10$ states, $ \Sigma = 3$ characters, and $ F = 5$ final states. Then the corresponding CFG G will have $ V =$ variables and $ R =$ rules.			

2 Short answer

1. Use the **pumping lemma** (and anything else that you might need) to prove that $L = \{x \in \{a, b\}^* : x \text{ is not a palindrome}\}$ is **not** regular.

2. In the Myhill-Nerode theorem an equivalence relation \sim is associated to any language *L*. We did this by defining, for a given *L*, that $x \sim x'$ if *(complete the sentence)*

Let $L = \{x \in \{a, b\}^* : x \text{ is a palindrome}\}$. Then x = aa and x' = aaa are / aren't (please circle the correct choice) ~ related to one another because (complete the sentence)

3. Give a **CFG** for the language $L = \{xx^Ryy^R : x, y \in \{a, b\}^*\}$. Your CFG must be as **simple** as **possible**.

4. Draw a **picture** that helps explain the main idea behind the **pumping lemma** for CFLs. You picture should include labels S, A, and u, v, x, y, z. Then, with no more than a couple of sentences, explain the proof idea that your picture aims to convey.

5. Carefully explain what it means if I say: "the CFLs are closed under intersection. Don't indicate if the statement is true or false—just provide a precise mathematical translation of the meaning of the claim.

Now prove or disprove (circle one) the claim: the CFLs are closed under intersection.

6. Let L be the set of all decimal digits d such that d occurs infinitely often in the decimal representation of the number $\pi = 3.14159\cdots$.

Is *L* regular? Circle either: yes or no.

Now prove your answer.

3 True or False

Darken (completely fill in) the correct answer. If you don't know an answer, please guess.

1. True The concatenation of finite languages A and B is finite. False If $M = (Q, \Sigma, \delta, q_0, F)$ is a DFA and $F \neq \emptyset$ then $L(M) \neq \emptyset$. 2. **True** False Every regular language can be accepted by an NFA with only one final state. 3. True False If L^* is infinite the L is infinite. 4. True False Regular expressions are strings. 5. True False If $M = (Q, \Sigma, \delta, q_0, F)$ is an NFA then $x \in L(M)$ iff $\delta^*(q_0, x) \cap F \neq \emptyset$. 6. True False The pumping lemma can be used to show that languages are regular. 7. True False Let $L = \{a^n b^n : n \ge 1\}$. Then L^* is regular. 8. True False If $A \subseteq L \subseteq B$ and A and B are regular then L is regular. 9. True False 10. True False If $L \cup L'$ is regular then L and L' are regular. If $L \oplus L'$ is finite then L regular iff L' is regular. 11. True False 12. | **True** False The image h(L) of a context-free language L under a homomorphism h is context free. $L_{\pi} = \{3, 31, 314, 3141, 31415, 314159, \ldots\}$ is regular. 13.True False Complementing the final state set of an NFA M gives an NFA for $\overline{L(M)}$. 14.True False For a DFA $M = (Q, \Sigma, \delta, q_0, F)$, we defined δ^* as $\delta = \bigcup_{i \ge 0} \delta^i$. 15.True False $L = \{w \in \{0,1\}^* : w \text{ contains an equal number of 01's and 10's}\}$ is regular. 16.True False 17. **True** The intersection of a CFL and a regular language is context free. False 18. **True** An efficient algorithm is known to decide if two NFAs accept the same language. False 19.An efficient algorithm is known to decide if $w \in L(\alpha)$ for a regular expression α . True False 20.An efficient algorithm is known to decide if $w \in L(G)$ for a CNF CFG G. True False