Problem Set 10 - Due Thursday, June 5, at 3:30 pm

Problem 1. State whether the following claims are true or false, briefly explaining your answer.
a. $A \leq_{\mathrm{P}} A$.
b. If $A \leq_{\mathrm{P}} B$ and $B \leq_{\mathrm{P}} C$, then $A \leq_{\mathrm{P}} C$.
c. If $A \leq_{\mathrm{P}} B$ then $\bar{A} \leq_{\mathrm{P}} \bar{B}$.
d. If A is r.e. and $A \leq_{\mathrm{P}} \bar{A}$ then A is recursive.
e. If A is recursive, then $A \leq_{\mathrm{P}} a^{*} b^{*}$.
f. If A is r.e., then $A \leq_{\mathrm{P}} A_{\mathrm{TM}}$.

Problem 2. Suppose you are given a polynomial time algorithm D that, on input of a Boolean formula ϕ, decides if ϕ is satisfiable. Describe an efficient procedure S that finds a satisfying assignment for ϕ. How many calls to D do you make?

Problem 3. Let MULT-SAT $=\{\langle\phi\rangle \mid \phi$ has at least ten satisfying assignments $\}$. Show that MULT-SAT is NP-complete.

Problem 4. A graph $G=(V, E)$ is said to be k-colorable if there is a way to paint its vertices using colors in $\{1,2, \ldots, k\}$ such that no adjacent vertices are painted the same color. When k is a number, by $k C O L O R$ we denote the language of (encodings of) k-colorable graphs. The language $3 C O L O R$ is NP-Complete. (You can assume this.) Use this to prove that the language $4 C O L O R$ is NP-Complete, too.

Problem 5. Let
$D=\{\langle p\rangle: p$ is a polynomial (in any number of variables) and p has an integral root. $\}$
Prove that D is NP-hard. Is it NP-complete?

