Problem Set 2 - Due Friday, April 11, 2013

Problem 1 Draw DFAs for the following languages:
(a) $A=\left\{x \in\{a, b\}^{*}:|x| \geq 3\right\}$
(b) $B=$ the binary encodings of numbers divisible by 7 . Allow leading zeros and the empty string. Hint: what you've seen mod 7 .
(c) $C=$ the binary encodings of numbers divisible by 7 . Don't allow leading zeros or the empty string. Thus $C=\{0,111,1110, \ldots\}$.
(d) $D=$ binary strings that contain the same number of 01 's as 10 's.

Problem 2 Show directly (ie, from the definition of a regular language) that the regular languages over an alphabet Σ are closed under reversal.

Problem 3 State whether the following propositions are true or false, proving each answer.
(a) Every DFA-acceptable language can be accepted by a DFA with an odd number of states.
(b) Every DFA-acceptable language can be accepted by a DFA whose start state is never visited twice.
(c) Every DFA-acceptable language can be accepted by a DFA no state of which is ever visited more than once.
(d) The language $L=\left\{x \in\{a, b\}^{*}: x\right.$ starts and ends with the same character $\}$ can be accepted by a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ for which $\delta^{*}\left(q_{0}, w\right)=q_{0}$ for some $w \neq \varepsilon$. Assume an alphabet of $\Sigma=\{a, b\}$.

Problem 4 A homomorphism is a function $h: \Sigma \rightarrow \Gamma^{*}$ for alphabets Σ, Γ. Given a homomorphism h, extend it to strings and then languages by asserting that $h(\varepsilon)=\varepsilon, h\left(a_{1} \cdots a_{n}\right)=h\left(a_{1}\right) \cdots h\left(a_{n}\right)$ (for $a_{1}, \ldots, a_{n} \in \Sigma$), and $h(L)=\{h(x): x \in L\}$.
(a) Prove: for any homomorphism h, if L is DFA-acceptable, then so is $h(L)$.
(b) Disprove: for any homomorphism h, if $h(L)$ is DFA-acceptable, then so is L. For this you may assume that there's a language L that is not DFA-acceptable.

Problem 5. Fix a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$. For any two states $q, q^{\prime} \in Q$, let us say that q and q^{\prime} are equivalent, written $q \sim q^{\prime}$, if, for all $w \in \Sigma^{*}$ we have that $\delta^{*}(q, w) \in F \Leftrightarrow \delta^{*}\left(q^{\prime}, w\right) \in F$. Here δ^{*} is the extension of δ to Σ^{*} defined by $\delta^{*}(q, \varepsilon)=q$ and $\delta^{*}(q, a x)=\delta^{*}(\delta(q, a), x)$.
(a) Prove that \sim is an equivalence relation.
(b) Suppose that $q \sim q^{\prime}$ for distinct q, q^{\prime}. Describe, first in plain English and then in precise mathematical terms, how to construct a smaller (=fewer state) DFA M^{\prime} that accepts the same language as M.

