Problem Set 3 – Due Friday, April 18, 2014

Problem 1. Using the procedure shown in class, convert the following NFA into a DFA for the same language. Show all work.

Problem 2. Using the procedure shown in class, eliminate all ε -arrows from the following NFA.

Problem 3. Let $L_1, L_2, L_3 \subseteq \Sigma^*$ be languages and let $\mathbf{maj}(L_1, L_2, L_3)$ be the set of all $x \in \Sigma^*$ that are in at least two of L_1, L_2, L_3 . Prove: if L_1, L_2 , and L_3 are DFA-acceptable then so is $\mathbf{maj}(L_1, L_2, L_3)$.

Problem 4 Let $\mathcal{Z}(L) = \{a_1 0 a_2 0 \cdots a_n 0 \in \Sigma^* : a_1 a_2 \cdots a_n \in L\}$. Prove that the DFA-acceptable languages are closed under \mathcal{Z} . Having proved it once: can you think of another, different proof?

Problem 5. How many states are in the smallest possible DFA for $\{0,1\}^*\{1^{10}\}$? Prove your result.

Problem 6 Let L_n (for $n \ge 1$) be $\{0,1\}^*\{1\}\{0,1\}^n$. Prove that there is an NFA for L_n having n+2 states, but that there is no DFA for L_n having 2^n-1 or fewer states. In a well written English sentence or two, give give a high-level interpretation of your result.