Problem Set 3 - Due Friday, April 18, 2014

Problem 1. Using the procedure shown in class, convert the following NFA into a DFA for the same language. Show all work.

Problem 2. Using the procedure shown in class, eliminate all ε-arrows from the following NFA.

Problem 3. Let $L_{1}, L_{2}, L_{3} \subseteq \Sigma^{*}$ be langauges and let $\mathbf{m a j}\left(L_{1}, L_{2}, L_{3}\right)$ be the set of all $x \in \Sigma^{*}$ that are in at least two of L_{1}, L_{2}, L_{3}. Prove: if L_{1}, L_{2}, and L_{3} are DFA-acceptable then so is $\mathbf{m a j}\left(L_{1}, L_{2}, L_{3}\right)$.

Problem 4 Let $\mathcal{Z}(L)=\left\{a_{1} 0 a_{2} 0 \cdots a_{n} 0 \in \Sigma^{*}: a_{1} a_{2} \cdots a_{n} \in L\right\}$. Prove that the DFA-acceptable languages are closed under \mathcal{Z}. Having proved it once: can you think of another, different proof?

Problem 5. How many states are in the smallest possible DFA for $\{0,1\}^{*}\left\{1^{10}\right\}$? Prove your result.

Problem 6 Let $L_{n}($ for $n \geq 1)$ be $\{0,1\}^{*}\{1\}\{0,1\}^{n}$. Prove that there is an NFA for L_{n} having $n+2$ states, but that there is no DFA for L_{n} having $2^{n}-1$ or fewer states. In a well written English sentence or two, give give a high-level interpretation of your result.

