Problem Set 4 - Due Friday, April 25, 2013

Problem 1.

(a) Using the procedure shown in class, convert NFA into a regular expression for the same language.

(b) Using the procedure shown in class, convert the regular expression $\left(a b^{*} \cup c\right)^{*}$ into an NFA for the same language.
(c) Suppose that a (fully parenthesized) regular expression α over the alphabet Σ has c characters from Σ,
o composition symbols,
s stars, and
u union symbols. Convert α it to a DFA M for the same language using the procedures seen in class. How many states will M have?

Problem 2. Without consulting sources other than your book, provide a well-written proof of the following "strong" form of the pumping lemma:

If L is regular then there exists a number p such that for all $S=s_{1} s s_{2} \in L,|s| \geq p$, there are strings $x, y, z, s=x y z, 1 \leq|y| \leq p$, such that $s_{1} x y^{i} z s_{2} \in L$ for all $i \geq 0$.

Problem 3. Prove that the following languages are not regular.
(a) $L=\left\{x \in\{a, b\}^{*}: x\right.$ is not a palindrome $\}$.
(b) $L=\left\{w=w: w \in\{0,1\}^{*}\right\}$. (The second $=$ is a character from the alphabet $\{0,1,=\}$ that L is over.)
(c) $L=\left\{a^{2^{n}}: n \geq 0\right\}$.

Problem 4. Let $L=\left\{x x^{R}: x \in\{a, b\}^{+}\right\}$. Use the Myhill-Nerode theorem to prove that L is not regular.
Problem 5. Define $A=\left\{x \in\{a, b, \nexists\}^{*}: x\right.$ contains an equal number of a 's and b 's or x contains consecutive $\sharp \mathrm{s}$ or consecutive letters $\}$.
(a) Can you use the pumping lemma to prove that A is not regular? Explain.
(b) Prove that A is not regular.

Problem 6. Are the following statements true or false? Either prove the statement or give a simple counter-example.
(a) If $L \cup L^{\prime}$ is regular then L and L^{\prime} are regular.
(b) If L^{*} is regular then L is regular.
(c) If $L L^{\prime}$ is regular then L and L^{\prime} are regular.
(d) If L and L^{\prime} agree on all but a finite number of strings, then one is regular iff the other is regular.
(e) If R is regular, L is not regular, and L and R are disjoint, then $L \cup R$ is not regular.
(f) If L differs from a non-regular language A by a finite number of strings F, then L itself is not regular.

