Problem Set 9 - Due Friday, May 30, 2014

Problem 1. As you did last week, classify each of the following languages as **recursive**, **r.e.** but not decidable, **co-r.e.** but not decidable, or **neither** r.e. nor co-r.e. Giving reductions where appropriate, prove your results. *This problem will count as 30 points, triple a conventional problem.*

A $A = \{ \langle M, k \rangle : M \text{ is a TM that accepts at least one string of length } k \}.$

B $B = \{ \langle M, k \rangle : M \text{ is a TM that runs forever on at least one string of length } k \}.$

C $C = \{ \langle M, k \rangle : M \text{ is a TM that accepts a string of length } k \text{ and diverges on a string of length } k \}.$ Assume that the underlying alphabet has at least two characters.

D $D = \{ \langle M \rangle : M \text{ is a TM that accepts some palindrome} \}.$

E $E = \{\langle G_1, G_2 \rangle : G_1 \text{ and } G_2 \text{ are CFGs and } L(G_1) \oplus L(G_2) = \emptyset \}.$ You may assume that $L = \{\langle G \rangle : G \text{ is a CFG and } L(G) = \Sigma^* \}$ is undecidable.

F $F = \{ \langle M \rangle : M \text{ is a TM and } L(M) \text{ is recursive} \}.$

Problem 2 Prove or disprove each of the following claims.

A. $A \leq_{\mathrm{m}} A$.

B. If $A \leq_{\mathrm{m}} B$ and $B \leq_{\mathrm{m}} C$, then $A \leq_{\mathrm{m}} C$.

C. If $A \leq_{\mathrm{m}} B$ then $\overline{A} \leq_{\mathrm{m}} \overline{B}$.

D. If A is r.e. and $A \leq_{\mathrm{m}} \overline{A}$ then A is recursive.

E. If A is recursive, then $A \leq_{\mathrm{m}} a^* b^*$.

F. If $A \leq_{\mathrm{m}} B$ then $B \leq_{\mathrm{m}} A$.

G. If $A \leq_{\mathrm{m}} B$ and $B \leq_{\mathrm{m}} A$ then A = B.