Problem Set 9 - Due Friday, May 30, 2014

Problem 1. As you did last week, classify each of the following languages as recursive, r.e. but not decidable, co-r.e. but not decidable, or neither r.e. nor co-r.e. Giving reductions where appropriate, prove your results. This problem will count as 30 points, triple a conventional problem.

A $A=\{\langle M, k\rangle: M$ is a TM that accepts at least one string of length $k\}$.
B $B=\{\langle M, k\rangle: M$ is a TM that runs forever on at least one string of length $k\}$.
C $C=\{\langle M, k\rangle: M$ is a TM that accepts a string of length k and diverges on a string of length $k\}$. Assume that the underlying alphabet has at least two characters.

D $D=\{\langle M\rangle: M$ is a TM that accepts some palindrome $\}$.
E $E=\left\{\left\langle G_{1}, G_{2}\right\rangle: G_{1}\right.$ and G_{2} are CFGs and $\left.L\left(G_{1}\right) \oplus L\left(G_{2}\right)=\emptyset\right\}$.
You may assume that $L=\left\{\langle G\rangle: G\right.$ is a CFG and $\left.L(G)=\Sigma^{*}\right\}$ is undecidable.
F $\quad F=\{\langle M\rangle: M$ is a TM and $L(M)$ is recursive $\}$.

Problem 2 Prove or disprove each of the following claims.
A. $A \leq_{\mathrm{m}} A$.
B. If $A \leq_{\mathrm{m}} B$ and $B \leq_{\mathrm{m}} C$, then $A \leq_{\mathrm{m}} C$.
C. If $A \leq_{\mathrm{m}} B$ then $\bar{A} \leq_{\mathrm{m}} \bar{B}$.
D. If A is r.e. and $A \leq_{\mathrm{m}} \bar{A}$ then A is recursive.
E. If A is recursive, then $A \leq_{\mathrm{m}} a^{*} b^{*}$.
F. If $A \leq_{\mathrm{m}} B$ then $B \leq_{\mathrm{m}} A$.
G. If $A \leq_{\mathrm{m}} B$ and $B \leq_{\mathrm{m}} A$ then $A=B$.

