Quiz 1

First name: \square Last name: \square Seat \#: \square

Instructions: No notes/books/gadgets/neighbors.

1. Let $L=\{a, a b b\}$. List the first seven strings of L^{*} in lexicographic order $(a<b)$:

2. A DFA is a five-tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where Q is a finite set, Σ is an alphabet, $q_{0} \in Q, F \subseteq Q$,

3. The $65^{\text {th }}$ binary string in lexicographic order is \square (Assume $0<1$)
4. Darken the correct box. No justification is required. If you're not sure, guess.
(a) True False $\emptyset^{*}=\varepsilon$.
(b) True False Some alphabets are finite and some alphabets are infinite.
(c) True False Some strings are finite and some strings are infinite.
(d) True False Some languages are finite and some languages are infinite.
(e) True False The set of complex numbers can be regarded as a language \mathbb{C}.
(f) True False There is a language L_{0} that is a subset of every language.
(g) True False If $|L|=2$ then L^{*} is infinite.
(h) True False The Kleene closure of a language is always nonempty.
(i) True False The concatenation of finite languages A and B is finite.
(j) True False Fix Σ. If $L=\cup_{i \in \mathbb{N}}\left\{x_{i}\right\}$ with $x_{i} \in \Sigma^{*}$ then L is regular.
(k) True False An algorithm can determine if a graph $G=(V, E)$ has a perfect matching.
(l) True False If $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a DFA and $F \neq \emptyset$ then $L(M) \neq \emptyset$.
5. In the Diophantine equation problem you are given and you want to decide \square. Be precise and specific.
6. Draw a DFA that accepts the language $L=\{a a b, a b a\}$. Your DFA should use as few states as possible. The underlying alphabet is $\Sigma=\{a, b\}$.
