Quiz 2

First name: \square Last name: \qquad Seat \#: \square
Instructions: No notes/books/gadgets/neighbors. Be mathematically precise.

1. Let's recall the product construction, as used to show that the DFA-acceptable languages are closed under union. Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ be a DFA for L_{1} and let $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ be a DFA for L_{2}. We construct a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ for $L_{1} \cup L_{2}$ by asserting that $Q=\square$, that $\delta((p, q), a)=\square$, that $q_{0}=\square$, and, finally, that F
 . If $\left|Q_{1}\right|=N_{1},\left|F_{1}\right|=n_{1},\left|Q_{2}\right|=N_{2}$, and $\left|F_{2}\right|=n_{2}$, then $|F|=$ \qquad (formula involving $N_{1}, n_{1}, N_{2}, n_{2}$).
2. Suppose we use the subset construction to convert a 7 -state NFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ into a DFA $M^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}, F^{\prime}\right)$ for the same language. Then M^{\prime} will have $\left|Q^{\prime}\right|=\square$ states (a number). If $|F|=2$ then M^{\prime} will have $\left|F^{\prime}\right|=\square$ final states (a number).
3. The string 00100 is the \square th
4. Darken the correct box. No justification is required. If you're not sure, guess.

(a)	True	False	Every finite language is regular.
(b)	True	False	If A and B are regular then $A-B$ is regular.
(c)	True	False	If L^{*} is infinite the L is infinite.
(d)	True	False	Regular expressions are strings.
(e)	True	False	If $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is an NFA then $x \in L(M)$ iff $\delta^{*}\left(q_{0}, x\right) \subseteq F$.
(f)	True	False	If NFA $M=(Q, \Sigma, \delta, s, F)$ has $F=Q$ then $L(M)=\Sigma^{*}$.
(g)	True	False	The pumping lemma can be used to show that languages are regular.
(h)	True	False	Let $L=\left\{a^{n} b^{n}: n \geq 1\right\}$. Then L^{*} is regular.
(i)	True	False	An n-state NFA M can be converted into an n^{2}-state DFA for $L(M)$.
(j)	True	False	A regular expression α can be converted into a $2\|\alpha\|$-state NFA for $L(\alpha)$.
(k)	True	False	If $A \subseteq L \subseteq B$ and A and B are regular then L is regular.
(1)	True	False	In the Myhill-Nerode theorem, we defined $x \sim_{L} x^{\prime}$ by: $\left[x \in L \Leftrightarrow x^{\prime} \in L\right]$.

5. Carefully state the pumping lemma for regular languages. Use any form of this lemma you like, but make sure it's nontrivial and all quantifiers are clear.
6. Draw an NFA for $L=\{a a b, a b a\}$. Your NFA must use as few states and arrows as possible.
