Quiz 3

First: \square LAST: \square Seat: \square Row: \square

1. A PDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ has $|Q|=10$ states and $|\Sigma|=2$ characters in the input alphabet and $|\Gamma|=5$ characters in the tape alphabet. Then there are \square points in the domain of δ and \square points in the range of δ.
2. State the Church-Turing thesis:
3. Let A and B be languages. Define $A \leq_{\mathrm{m}} B$ (A many-one reduces to $\left.B\right)$:
4. When we define the language $A_{\mathrm{TM}}=\{\langle M, w\rangle$: TM M accepts $w\}$, what is the purpose of the angle brackets (the \rangle symbols) that surround M, w ?
5. Darken the correct box. No justification is required. If you're not sure, guess.
(a) True False If L is recursive then so is its complement, \bar{L}.
(b) True False If L^{*} is recursive than L is recursive.
(c) True False If L is context free then a queue automata (QA) can decide it.
(d) True False The r.e. languages are closed under complement.
(e) True False $L=\{\langle M\rangle: L(M) \neq \emptyset\}$ is Turing-acceptable (r.e.)
(f) True False $L=\left\{a^{n} b^{n}: n \geq 1\right\}$ is co-r.e.
(g) True False If $\Pi \leq_{\mathrm{m}} L$ and Π is undecidable than L is undecidable.
(h) True False To show that L is not r.e., it suffice to show that $A_{\text {TM }} \leq_{\mathrm{m}} L$.
(i) True False To show that L is not r.e., it suffice to show that $\overline{A_{\mathrm{TM}}} \leq_{\mathrm{m}} L$.
(j) True False A language L is either r.e. or co-r.e..
(k) True False The Turing-acceptable languages are closed under intersection.
(l) True False The Turing-acceptable languages are closed under set difference.
