Midterm

Instructions:

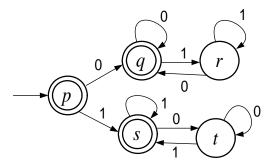
- Relax, breathe, be calm. It ain't so bad.
- Make sure to indicate your seat number—both letter and number—on your exam.
- Please do not sit next to a friend. That means anyone with whom you've ever discussed course material and whose name you know (first name, last name, or nickname). *Next to* means the person immediately to your left, right, front, front-left, or front-right.
- Cell phones off. No notes/books/gadgets.

First name:		Last name:	Seat #:	
I will not and did not cheat on this exam:		exam:		
			Your si	ignature

On page	you got
1	
2	
3	
4	
Σ	

- 1. Prof. Rogaway criticized Sipser's definition of a *language* as a *set of strings*; he said that one should add in that .
- 2. Let $L = \{b, ab\}$. List the first six strings of L^* in lexicographic order (assume a < b):
- 3. A **DFA** is a five-tuple $M = (Q, \Sigma, \delta, q_0, F)$ where Q is a finite set, Σ is an alphabet, $q_0 \in Q, F \subseteq Q$, and δ is a function with domain and range . In contrast, the transition function for an **NFA** has domain and range . .
- 4. We showed in class that the DFA-acceptable languages were closed under intersection. The construction that established this is called the \square . It works liked this. Given a DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and a DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ we construct a DFA $M = (Q, \Sigma, \delta, q_0, F)$ for $L(M_1) \cap L(M_2)$. For the state set of M we select $Q = \square$. (Thus if M_1 has 10 states and M_2 has 20 states, then M will have \square states.) For the start state of M we set $q_0 = \square$. The final states of M are set $F = \square$.
- 5. Suppose you use the procedure illustrated in class to convert a 100-state NFA M with ε -transitions into an NFA M' without any ε -transitions. How many states will M' have?

- 7. Suppose we use the procedure illustrated in class to convert the regular expression $(a \cup b^*)$ into an NFA M. How many states will M have? . (Count carefully; no partial credit.)
- 8. Consider the following DFA M. Describe the language $B \subseteq \{0,1\}^*$ it accepts in a simple and clear sentence.



9. Suppose you wish to show that there's no *smaller* (fewer-state) DFA for the language B of problem 9. One approach is to show that the DFA M has **no pair of equivalent states** (for the equivalence relation of homework 2, problem 5). For example,

q	$\not\sim s$ because			

10. Suppose you you wish to show that there's no *smaller* (fewer-state) DFA than M for the language B of problem 9. One approach is to use the **pigeonhole principle** and a proof by contradiction. Give the first few sentences of such a proof. You do not need to go through the full case analysis; doing any one case is fine.

- 11. In PS #2 we defined $\mathcal{E}(L) = \{x \in L : \text{there exists a } y \in \Sigma^+ \text{ for which } xy \in L\}.$ Let $L = ((0 \cup 1)(0 \cup 1))^*$. Then $\mathcal{E}(L) =$. (Write it in the simplest form (fewest characters) you can.
- 12. Carefully state the **pumping lemma** for regular languages. Be careful to make quantification clear.

13. Use the pumping lemma (and any other tools you need) to show that $L = \{x \in \{a, b\}^* : x \text{ is not a palindrome}\}$ is not regular.

14. A context-free grammar (CFG) is a triple $G = (V, \Sigma, R, S)$ where V (the variables) is a finite set, Σ (the *terminals*) is an alphabet, S (the *start symbol*) is an element of V,

and R (the *rules*) is (Answer with a mathematical description of the kind of "thing" that R is.)

- 15. **Darken** the **correct** box. No justification is needed. If you're not sure, guess (grading is based on the number of correct answers).
 - (a) **True** False If L_1 and L_2 are regular then $L_1 \cap L_2$ is regular.
 - (b) **True False** If $L_1 \cap L_2$ is regular then L_1 and L_2 are regular.
 - (c) **True False** If L^* is regular then L is regular.
 - (d) |**True** | **False** | If LL' is regular then L and L' are regular.
 - (e) **True** False If L and L' coincide on all but a finite number of strings, then one is regular iff the other is regular.
 - (f) **True** False There's a language L where $L = L^R$ but L contains no palindrome.
 - (g) **True** False There's a language L_0 that's a subset of every language.
 - (h) **True** False If L is accepted by an NFA then \overline{L} is accepted by a DFA.
 - (i) **True** | **False** If |L| = 1 then L^* is infinite.
 - (j) |**True** | **False** | The concatenation of finite languages A and B is finite.
 - (k) **True False** Every subset of a regular language is regular.
 - (1) **True False** There's an algorithm to determine if a multivariate polynomial has an integer root, but nobody knows its running time.
 - (m) **True False** If $M = (Q, \Sigma, \delta, q_0, F)$ is an NFA and F = Q then $L(M) = \Sigma^*$.
 - (n) **True** False If L is an language then $L^* L^+ = \{\varepsilon\}$.
 - (o) **True False** If $G = (V, \Sigma, R, S)$ is a context free grammar (CFG) all of whose rules are of the form $A \to B$ or $A \to Bc$ (where $A, B \in \Sigma$ and $c \in \Sigma$), then $L(G) = \emptyset$.
 - (p) **True** False Let $G = (V, \Sigma, R, S)$ and let $w \in L(G)$. Then G either has one parse tree with yield w or else it has none at all.