Problem Set 3 – Due Friday, April 17, 2015

Problem 1. Using the procedure shown in class, convert the following NFA into a DFA for the same language. Show all work.

Problem 2. Using the procedure shown in class, eliminate all ε -arrows from the following NFA.

- **Problem 3.** Let $L_1, L_2, L_3 \subseteq \Sigma^*$ be languages and let $Most(L_1, L_2, L_3)$ be the set of all $x \in \Sigma^*$ that are in at least two of L_1, L_2, L_3 . Prove: if L_1, L_2 , and L_3 are DFA-acceptable then so is $Most(L_1, L_2, L_3)$.
- **Problem 4** Let $Stutter(L) = \{a_1a_1 \ a_2a_2 \ \cdots \ a_na_n \in \Sigma^* : a_1a_2 \ \cdots \ a_n \in L\}$. (A) Prove that the DFA-acceptable languages are closed under *Stutter*. (B) Then, having proved it once, give another, entirely different proof.

Problem 5. How many states are in the smallest possible DFA for $\{0,1\}^* \{1^{10}\}$? Prove your result.

Problem 6 Let L_n (for $n \ge 1$) be $\{0,1\}^*\{1\}\{0,1\}^n$. Prove that there is an NFA for L_n having n+2 states, but that there is no DFA for L_n having $2^n - 1$ or fewer states. In a well written English sentence or two, give a high-level interpretation of your result.