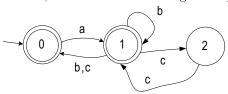
Problem Set 4 – Due Friday, April 24, 2015

Problem 1.

(a) Using the procedure shown in class, convert NFA into a regular expression for the same language.



- (b) Using the procedure shown in class, convert the regular expression $(ab^* \cup c)^*$ into an NFA for the same language.
- (c) Suppose that a (fully parenthesized) regular expression α over the alphabet Σ has length n. Convert it to a DFA M for the same language using the procedures seen in class. Show that will M have at most 2^{2n} states. (A tighter bound is possible, but harder.)

Problem 2. Use the pumping lemma to prove that the following languages are not regular.

- (a) $L = \{x \in \{a, b\}^* : x \text{ is not a palindrome}\}.$
- (b) $L = \{w = w : w \in \{0, 1\}^*\}$. (The second = is a character from the alphabet $\{0, 1, =\}$ that L is over.)
- (c) $L = \{a^{2^n}: n \ge 0\}.$

Problem 3. Let $L = \{xx^R : x \in \{a,b\}^+\}$. Use the Myhill-Nerode theorem to prove that L is not regular.

Problem 4. Define $A = \{x \in \{a, b, \sharp\}^* : x \text{ contains an equal number of } a$'s and b's or x contains consecutive \sharp s or consecutive letters $\}$.

- (a) Can you use the pumping lemma to prove that A is not regular? Explain.
- **(b)** Prove that A is not regular.

Problem 5. Are the following statements true or false? Either prove the statement or give a counter-example.

- (a) If $L \cup L'$ is regular then L and L' are regular.
- (b) If L^* is regular then L is regular.
- (c) If LL' is regular then L and L' are regular.
- (d) If L and L' agree on all but a finite number of strings, then one is regular iff the other is regular.
- (e) If R is regular, L is not regular, and L and R are disjoint, then $L \cup R$ is not regular.
- (f) If L differs from a non-regular language A by a finite number of strings F, then L itself is not regular.

Problem 6. Specify an algorithm to answer the following question: given a regular expression α , is $L(\alpha) = (L(\alpha))^R$? Upperbound the running time of your algorithm.