Problem Set 9 - Due Friday, May 29, 2015

Problem 1. As you did last week, classify each of the following languages as recursive, r.e. but not decidable, co-r.e. but not decidable, or neither r.e. nor co-r.e. Giving reductions where appropriate, prove your results. This problem is very important. Understanding reductions may be the most important concept of ECS 120.
1.1 $A=\{\langle M, k\rangle: M$ is a TM that accepts at least one string of length $k\}$.
1.2 $B=\{\langle M, k\rangle: M$ is a TM that runs forever on at least one string of length $k\}$.
1.3 $C=\{\langle M, k\rangle: M$ is a TM that accepts a string of length k and diverges on a string of length $k\}$. Assume that the underlying alphabet has at least two characters.
1.4 $D=\{\langle M\rangle: M$ is a TM that accepts some palindrome $\}$.
$1.5 E=\left\{\left\langle G_{1}, G_{2}\right\rangle: G_{1}\right.$ and G_{2} are CFGs and $\left.L\left(G_{1}\right) \oplus L\left(G_{2}\right)=\emptyset\right\}$.
You may assume that $L=\left\{\langle G\rangle: G\right.$ is a CFG and $\left.L(G)=\Sigma^{*}\right\}$ is undecidable.
1.6 $F=\{\langle M\rangle: M$ is a TM and $L(M)$ is recursive $\}$.

Problem 2 Prove or disprove each of the following claims.
$2.1 A \leq_{\mathrm{m}} A$.
2.2 If $A \leq_{\mathrm{m}} B$ and $B \leq_{\mathrm{m}} C$, then $A \leq_{\mathrm{m}} C$.
2.3 If $A \leq_{\mathrm{m}} B$ then $\bar{A} \leq_{\mathrm{m}} \bar{B}$.
2.4 If A is recursive, then $A \leq_{\mathrm{m}} a^{*} b^{*}$.
2.5 If $A \leq_{\mathrm{m}} B$ then $B \leq_{\mathrm{m}} A$.
2.6 If $A \leq_{\mathrm{m}} B$ and $B \leq_{\mathrm{m}} A$ then $A=B$.

Problem 3. Let us say that a nonempty set B is countable if you can list (possibly with repetitions) its elements $B=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\} ;$ more formally, there is a surjective ${ }^{1}$ function f from \mathbb{N} to B. We'll say that the empty set is also countable. A set is uncountable if it is not countable.
3.1 Prove that any subset A of a countable set B is countable.
3.2 Fix an alphabet Σ. Prove that there are countably many finite languages over Σ.
3.3 Fix an alphabet Σ. Prove that there are uncountably many infinite languages over Σ.

[^0]
[^0]: ${ }^{1}$ Recall that a function $f: A \rightarrow B$ is surjective (or onto) if for every $b \in B$ there is an $a \in A$ such that $f(a)=b$.

