Problem Set 9 – Due Friday, May 29, 2015

Problem 1. As you did last week, classify each of the following languages as **recursive**, **r.e.** but not decidable, **co-r.e.** but not decidable, or **neither** r.e. nor co-r.e. Giving reductions where appropriate, prove your results. *This problem is very important. Understanding reductions may be the most important concept of ECS 120.*

1.1 $A = \{ \langle M, k \rangle : M \text{ is a TM that accepts at least one string of length } k \}.$

1.2 $B = \{ \langle M, k \rangle : M \text{ is a TM that runs forever on at least one string of length } k \}.$

1.3 $C = \{\langle M, k \rangle : M \text{ is a TM that accepts a string of length } k \text{ and diverges on a string of length } k\}.$ Assume that the underlying alphabet has at least two characters.

1.4 $D = \{ \langle M \rangle : M \text{ is a TM that accepts some palindrome} \}.$

1.5 $E = \{\langle G_1, G_2 \rangle : G_1 \text{ and } G_2 \text{ are CFGs and } L(G_1) \oplus L(G_2) = \emptyset\}.$ You may assume that $L = \{\langle G \rangle : G \text{ is a CFG and } L(G) = \Sigma^*\}$ is undecidable.

1.6 $F = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is recursive} \}.$

Problem 2 Prove or disprove each of the following claims.

- **2.1** $A \leq_{\mathrm{m}} A$.
- **2.2** If $A \leq_{\mathrm{m}} B$ and $B \leq_{\mathrm{m}} C$, then $A \leq_{\mathrm{m}} C$.
- **2.3** If $A \leq_{\mathrm{m}} B$ then $\overline{A} \leq_{\mathrm{m}} \overline{B}$.
- **2.4** If A is recursive, then $A \leq_{\mathrm{m}} a^* b^*$.
- **2.5** If $A \leq_{\mathrm{m}} B$ then $B \leq_{\mathrm{m}} A$.
- **2.6** If $A \leq_{\mathrm{m}} B$ and $B \leq_{\mathrm{m}} A$ then A = B.
- **Problem 3.** Let us say that a nonempty set *B* is *countable* if you can list (possibly with repetitions) its elements $B = \{a_1, a_2, a_3, \ldots\}$; more formally, there is a surjective¹ function *f* from N to *B*. We'll say that the empty set is also countable. A set is *uncountable* if it is not countable.
- **3.1** Prove that any subset A of a countable set B is countable.
- **3.2** Fix an alphabet Σ . Prove that there are countably many finite languages over Σ .
- **3.3** Fix an alphabet Σ . Prove that there are uncountably many infinite languages over Σ .

¹Recall that a function $f: A \to B$ is surjective (or onto) if for every $b \in B$ there is an $a \in A$ such that f(a) = b.