Quiz 1

First name: \square Last name: \square Seat \#: \square

Instructions: No notes/books/gadgets/neighbors.

1. Prof. Rogaway criticized the book's definition of a language as a set of strings; he said that one should add in that \square
2. Let $L=\{10,001\}$. List the first six strings of L^{*} in lexicographic order (assume $0<1$):

3. A DFA is a five-tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where Q is a finite set, Σ is an alphabet, $q_{0} \in Q$, $F \subseteq Q$, and δ is a function with domain
\square and range . transition function for an NFA has domain
\qquad
4. Left side: draw a DFA for the language $L=\{0,1\}^{*}\{111\}$. Make your DFA as small ($=$ as few states) as possible. Right side: Draw an NFA for L. Make your NFA as small ($=$ as few states) as possible. Among all such NFAs, use as few transitions as possible.
5. Darken the correct box. No justification is required. If you're not sure, guess.
(a) True False There's a language L such that $L=L^{R}$ (the reversal of $L,\left\{x^{R}: x \in L\right\}$)
(b) True False There's a language L_{0} that's a subset of every language.
(c) True False If L is accepted by a DFA then \bar{L} is accepted by a DFA.
(d) True False If $|L|=5$ then L^{*} is infinite.
(e) True False The concatenation of finite languages A and B is finite.
(f) True False Every finite language L is accepted by some NFA.
(g) True False There's an algorithm to determine if a multivariate polynomial has an integer root, but the best known algorithm is extremely slow.
(h) True False If $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a DFA and $F=Q$ then $L(M)=\Sigma^{*}$.
(i) True False If $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is an NFA and $F=Q$ then $L(M)=\Sigma^{*}$.
(j) True False If Σ is an alphabet then $\Sigma^{*}-\Sigma^{+}=\{\varepsilon\}$.
6. In PS $\# 2$ we defined $\mathcal{E}(L)=\left\{x \in L\right.$: there exists a $y \in \Sigma^{+}$for which $\left.x y \in L\right\}$.
\square . (Write it in a simple form.)
