6.

Quiz 1

First name:	Last name:		Seat #:			
Instructions: No notes/books/gadgets/neighbors.						
1. Prof. Rogaway criticized the book's definition of a language as a set of strings; he said that one						
should add in that						
2. Let $L = \{10, 001\}$. List the first six strings of L^* in lexicographic order (assume $0 < 1$):						
3. A DFA is a five-tuple $M = (Q, \Sigma, \delta, q_0, F)$ where Q is a finite set, Σ is an alphabet, $q_0 \in Q$,						
$F \subseteq Q$, and δ is a function wit	h domain	and range	. In contrast, the			
transition function for an ${\bf NF}$	A has domain	and range				
	1 1 T					

4. Left side: draw a DFA for the language $L = \{0, 1\}^* \{111\}$. Make your DFA as small (= as few states) as possible. Right side: Draw an NFA for L. Make your NFA as small (= as few states) as possible. Among all such NFAs, use as few transitions as possible.

5. Darken the correct box. No justification is required. If you're not sure, guess.

(a)	True	False	There's a language L such that $L = L^R$ (the reversal of L, $\{x^R : x \in L\}$)		
(b)	True	False	There's a language L_0 that's a subset of every language.		
(c)	True	False	If L is accepted by a DFA then \overline{L} is accepted by a DFA.		
(d)	True	False	If $ L = 5$ then L^* is infinite.		
(e)	True	False	The concatenation of finite languages A and B is finite.		
(f)	True	False	Every finite language L is accepted by some NFA.		
(g)	(g) True False There's an algorithm to determine if a multivariate polynomial has an integer root, but the best known algorithm is extremely slow.				
(h)	True	False	If $M = (Q, \Sigma, \delta, q_0, F)$ is a DFA and $F = Q$ then $L(M) = \Sigma^*$.		
(i)	True	False	If $M = (Q, \Sigma, \delta, q_0, F)$ is an NFA and $F = Q$ then $L(M) = \Sigma^*$.		
(j)	True	False	If Σ is an alphabet then $\Sigma^* - \Sigma^+ = \{\varepsilon\}.$		
In PS #2 we defined $\mathcal{E}(L) = \{x \in L : \text{there exists a } y \in \Sigma^+ \text{ for which } xy \in L\}.$					
Let i	$L = \{0\}^* \{$	[1]. Then	$\mathcal{E}(L) =$. (Write it in a simple form.)	