First: LAST: Seat Letter: Number:

1. Prove that that CFG $S \to 0 \mid 1 \mid S \cup S$ is **ambiguous**. An appropriate and minimal **picture** will suffice.

- 2. A PDA $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ has transition function δ : \longrightarrow \bigcirc (Fill in the domain and range.) Thus if $Q = \{q_0, q_1, q_2, q_3, q_4\}$ and $\Sigma = \{a, b, c\}$ and $\Gamma = \{A, B, C, \$\}$ then the domain of δ has \bigcirc points and its range has \bigcirc points. (Answers are numbers.)
- 3. Define what it means for a language L to be **recursive** (or **decidable**). (Don't use the word *decides* in your answer.)
- 4. State the **Church-Turing thesis**.

5. Darken the correct box. No justification is required. If you're not sure, guess.

(a) True	False	The CFLs are closed under homomorphism.
(b) True	False	Every context-free language has a context-free complement.
(c) True	False	If L is regular and nonempty then L has an ambiguous CFG.
(d) True	False	Given CFGs G_1 and G_2 , there's an algorithm to decide if $L(G_1) = L(G_2)$.
(e) True	False	If L is context free and R is regular then $L \cap R$ is context free.
(f) True	False	$\{w \in \{a,b,c\}^* \colon w \text{ has an equal numbers of } a\text{'s, } b\text{'s, and } c\text{'s }\}$ is context free.
(g) True	False	The set of all regular expressions over $\{0, 1\}$ is context free.
(h) True	False	The pumping lemma can be used to show that a language is context free.
(i) True	False	If L^* is context free then L is context free.
(j) True	False	Every context-free languages is decidable.
(k) True	False	If M is a TM and x a string then M either accepts x or rejects x .
(l) True	False	Every decidable language is r.e