ECS 120: Theory of Computation PS #10S
UC Davis — Phillip Rogaway June 3, 2014

Problem Set 10 Solutions

Note the unusual day for this (minimal) assignment being due.

Problem 1. Let SAT20 = {(¢): ¢ has at least twenty different satisfying assignments}. Show
that SAT20 is NP-complete.

First, it is easy to see that SAT20 € NP. On input of a Boolean formula ¢, a verifier could
guess twenty Boolean assignments, t1,ts,%3, -, t2g, and then verify that these assignments are
different from one another and that each satisfies ¢. In other words, the certificate consists of
20 distinct satisfying assignments ¢; through tog.

To show that SAT20 is NP-hard, we show that SAT <, SAT20. The function f that maps an
instance ¢ of SAT to an instance ¢' of SAT20 works as follows:

¢/:¢/\(.731\/:U2\/x3\/$4\/$5),

where each x; is new variable (they don’t occur in ¢). This reduction is certainly polynomial
time. Now if ¢ is unsatisfiable, certainly ¢’ is, too, since we have only conjuncted an additional
term. But if ¢ has some satisfying assignments ¢, than ¢’ has at least 31 (and therefore at least
20) satisfying assignments, (corresponding to the 32 different ways of extending ¢ to the new
variables x1, x2, x3, 24, T5.

Problem 2. A graph G = (V, E) is said to be k-colorable if there is a way to paint its vertices
using colors in {1,2,... k} such that no adjacent vertices are painted the same color. Let
G3C denote the language of encodings of 3-colorable graphs. Let G4C denote the language
of encodings of 4-colorable graphs. The language G3C is NP-Complete. (We will prove
this on Monday.) Use this to prove that G4C is NP-Complete, too.

First, it is easy to see that G4C is in NP. Given a graph G = (V, E) you need only guess a
coloring ¢ : V' — {1,2,3,4} and then verify that c(x) # z(y) for all {z,y} € E (as well as
c(x),c(y) € {1,2,3,4}.) Clearly this takes a polynomial amount of time.

Now we have to show G3C<,G4C. Given a graph G = (V, E) (an instance of the G3C problem)
we produce a graph G' = (V' E’) as follows: V! =V U{z}, and £ = EU{{z,2} : x € V},
where z is a name for a vertex not in V. That is, G’ is constructed by adding a new vertex to
G and connecting it to every node of G. Clearly if G is 3-colorable then G’ will be 4-colorable;
just use the new color for the newly-added vertex. Conversely, if G’ is 4-colorable then G' must
be 3-colorable, since the color used for vertex z has to be different from the color used on every
other vertex, and so restricting the coloring ¢’ of G’ to the nodes of G will immediately give a
3-coloring of GG, apart from the names of the colors used. Finally, observe that the reduction
itself is polynomial-time computable.

