ECS 120: Theory of Computation ps2-soln
UC Davis — Phillip Rogaway April 10, 2015

Problem Set 2 Solutions

Problem 1 Draw DFAs for the following languages:
(a) A={x e {a,b}*: |z| >3}

(b) B = the binary encodings of numbers divisible by 7. Allow leading zeros and the empty string as
alternate names of 0. Thus B = {¢, 0, 00,000,111, 0000, 1110, ...}

(¢) C = the binary encodings of numbers divisible by 7. Don’t allow leading zeros or the empty string.
Thus C = {0,111,1110,...}.

(d) D = binary strings that contain the same number of 01’s as 10’s.

Part (a)

Part (b): Add a O-labeled arc from © 0
state i to state 2i mod 7; add a 1-labeled 1 (\1 0 0
arc from state i to state 2i+1 mod 7 O—

1

Part (d): the language is all strings that start and
end with the same character (including €).

Problem 2. Let E(L) = {x € L: there exists a y € X7 for which xy € L}. (By ¥* we mean ¥¥*.)
Part A. What is £({0,1}*)? What is £({e,0,1,00,01,111,1110,1111})?

£({0,1}*) = {0,1}*, while £({e,0,1,00,01,111, 1110, 1111}) = {¢,0,1,111}.

Part B. Prove that if L is DFA-acceptable then E(L) is, too.

Given a DFA M = (Q, %, 4, qo, F') for L, a DFA M = (Q, %, 4, qo, F’) is constructed for £(L) by “pruning”
the final state set; we define F’ to be the set of all states ¢ € F such that there exists some nontrivial
path from ¢ to some final state of M. Then x € L(M') iff x € L and there is some y € ¥ such that
xy € L(M).

Problem 3 State whether the following propositions are true or false, proving each answer.

2 ECS 120 ps2-soln: Problem Set 2 Solutions

(a) Every DFA-acceptable language can be accepted by a DFA with an odd number of states.

True. The idea is to add a “dummy state” in the case that the machine has an even number of states.
Formally, given a DFA M = (Q,%,9,qo, F), if |Q| is odd set M’ = M and if |@| is even then let
M = (QU{s},%,d,qo, F) (where s € Q) and let §'(q,a) = §(q,a) for g € Q,a € ¥ and §'(s,a) = s (say)
for a € ¥. Clearly L(M) = L(M') and M’ has an odd number of states.

(b) Every DFA-acceptable language can be accepted by a DFA whose start state is never visited twice.

True. Add a new start state and connect it up to all the states that the old start state was connected to,
in the same way. Formally, given a DFA M = (Q, X, 4, qo, F') construct a DFA M’ = (QU{s},X,d',s, F")
(for s € Q) by saying §'(q,a) = d(q,a) for g € @Q, a € X, and 0'(s,a) = §(qo,a) for a € X, and F' = F' if
g€ Fand F=FU{s}if g € F.

(c) Every DFA-acceptable language can be accepted by a DFA no state of which is ever visited more than
once.

False. Only finite languages can be accepted by such a machine, and some DFA-acceptable languages
are infinite.

(d) The language L = {x € {a,b}* : = starts and ends with the same character} can be accepted by a
DFA M = (Q,X%,6,q0, F) for which §*(qo,w) = qo for some w # . Assume an alphabet of ¥ = {a,b}.

False. Since a € L and b € L we know that §(go,a) € F and §(qo,b) € F. If w begins with an a then
0*(qo, wb) = 6*(qo,b) € F, but wb & L. If w begins with a b then 6*(qo, wa) = §*(qo,a) € F, but wa & L.

Problem 4 A homomorphism is a function h : ¥ — I'* for alphabets 3, T'. Given a homomorphism h,
extend it to strings and then languages by asserting that h(e) = €, h(ay---an) = h(a1)---h(a,)
(for ai,...,an € X), and h(L) = {h(z) : x € L}.

(a) Prove: for any homomorphism h, if L is DFA-acceptable, then so is h(L).

Given a DFA M, replace each a-labeled transition by an h(a)-labeled one. For arcs now bearing multi-
character labels a; - - - a,,, add m — 1 intermediate states connected by arcs labeled by a1, ..., a,,. In this
way we get an NFA for h(L). The equivalence of the DFA and NFA acceptable languages establishes the
result.

(b) Disprove: for any homomorphism h, if h(L) is DFA-acceptable, then so is L. For this you may
assume that there’s a language L that is not DFA-acceptable.

Let L C ¥* be any language that is not DFA-acceptable. Let h(a) = ¢ for all @ € ¥.. Then h(L) = {e} is
DFA-acceptable even though L is not.

Problem 5. Fiz a DFA M = (Q,%,6,q0, F). For any two states q,q' € Q, let us say that q and ¢’ are
equivalent, written q ~ ¢, if, for all w € ¥* we have that §*(¢,w) € F < §*(¢',w) € F. Here 6* is
the extension of 6 to X* defined by 6*(q,¢) = q and §*(q,ax) = 6*(d(q,a),x).

(a) Prove that ~ is an equivalence relation.

This is immediate from the definition. Reflexive: ¢ ~ ¢ because 6* (¢, w) € F iff 6*(¢,w) € F. Symmetric:
If ¢ ~ ¢ then, for all w € ¥* §*(q,w) € F iff 6*(¢',w) € F. Thus ¢’ ~ ¢. Transitive: If ¢ ~ ¢’ and
q' ~ ¢" then, for all w € ¥*, §*(¢,w) € F iff 6*(¢',w) € F iff *(¢",w) € F.

(b) Suppose that q ~ ¢’ for distinct q,q’. Describe, first in plain English and then in precise mathematical
terms, how to construct a smaller (=fewer state) DFA M' that accepts the same language as M.

Create M’ by eliminating ¢’ and redirecting all arcs into it into state g, instead. Formally, assuming
q # qo, let M' = (Q', 2,8, q0, F') where Q' = Q—{q¢'}, F' = F—{q'}, and ¢’(p,a) = ¢ when §(p,a) = ¢/,
and 0'(p,a) = d(p,a) otherwise. If ¢ = qo then swap the roles of ¢ and ¢’ (or change the start state
to q).

