ECS 120: Theory of Computation ps3-soln
UC Davis — Phillip Rogaway April 17, 2015

Problem Set 3 Solutions

Problem 1. Using the procedure shown in class, convert the following NFA into a DFA for the same
language.

The problem is pretty mechanical—I’'m not going to draw out the solution—hopefully you didn’t have
trouble doing so.

Problem 2. Using the procedure shown in class, eliminate all e-arrows from the following NFA.

The problem too is mechanical. States 1, 2, and 3 all become final (so all states are now final), since
they can reach final states along e-paths. Now we add in “bypass arcs.” The approach I explained in
class for doing this: for each state p of the NFA, in parallel: find all all states g reachable from p along
e-paths; find each transition to a state r labeled by a character a € ¥; add in a direct connection, if
needed, from p to r labeled by a. After all this is done, eliminate all e-transitions.

Problem 3. Let Ly, Ly, L3 C X* be languages and let Most(Ly, Lo, L3) be the set of all x € ¥* that are in
at least two of L1, Lo, Ls. Prove: if Ly, Lo, and Ls are DFA-acceptable then so is Most(L1, Lo, Ls).

Solution 1: Extend the product construction. Let My = (Q1,%, 61,1, F1), My = (Q2, %, 02, g2, F3), and
M; = (Q3,%, 03, q3, F3) be DFAs for Ly, Lo, and L3, respectively. Form a new DFA M = (Q, %, 4, s, F) for
MOSt(L17 Lo, L3) be deﬁning Q=0Q1xQ2xQ3, 5= (q17 q2, Q3)7 5((])’ q, ’I"), a) = (51(pv a)7 52(Qa Cl), 53(T’ a))7
and F = {(p,q,7) € Q1 X Q2 X Q3: at least two of the following three things are true: p € Fy, q € F5,
r € F3}. It is easy to see that L(M) = Most(L1, L2, L3).

Solution 2: Use closure properties. Note that Most(Ly, Lo, L3) = (L1 N La) U (La N Lg) U (L1 N Ls).
The regular languages are closed under N and U and so they are closed under Most.

Problem 4 Let Stutter(L) = {a1a1 azas -+ apna, € ¥* : a1az---a, € L}. (A) Prove that the DFA-
acceptable languages are closed under Stutter. (B) Then, having proved it once, give another,
entirely different proof.



2 ECS 120 ps3-soln: Problem Set 3 Solutions

Here three different proofs:

(1) Consider the map h: X — X* defined by h(a) = aa for all a € 3. Then Stutter(L) = h(L). We know
that the DFA /NFA-acceptable languages are closed under homomorphism (from a previous problem set),
so we are done.

(2) Let M = (Q,%,6,qo, F) be a DFA accepting L. To make an NFA accepting Stutter(L), add a state
“in the middle of each arrow” to ensure that a symbol a € ¥ is always followed by a symbol a, and the
same destination is then reached. This would give an NFA for Stutter(L). You could, if desired, make
it into a DFA by the addition of a dead state that was connected up to the rest of the machine in the
natural way.

(3) Use the regular-expression characterization of the DFA-acceptable languages. Let a be a regular
expression over Y. Construct from « a new regular expression S by replacing each character a € ¥ that
occurs in « by (a o a). What results is a new regular expression 8 where L(3) = Stutter(L(c)).

Problem 5. How many states are in the smallest possible DFA for {0,1}*{11°}? Prove your result.

First, 11 states are sufficient: there is a DFA Mj; that accepts L = {0,1}*{11°} and has 11 states. The
machine has states @ = {qo,q1,...,q10} With go the start state, F' = {q10} the final states, §(¢,0) = qo
for all states qc Q, while 5((]“ 1) = (qi+1 for i < 10 and 5(Q10, 1) = q10-

Second, 11 states are mecessary. Suppose for contradiction that there exists a 10-state DFA M =
(Q,%,6,q0, F) that accepts L. Consider the 11 strings 1* for 0 < i < 10. By the pigeonhole princi-
ple we know that 6*(go, 1?) = 6*(qo, 17) for 0 < i < I < 10. But then 6*(go, 1'1'971) = 6*(go, 1711°71), s0
§*(qo, 11°77) = §*(qo, 1'°) for some j > 1. But the lefthand state must be outside F and the righthand
states must be in F', a contradiction.

One could use the DFA minimization procedure to prove this, establishing that M, is already a minimal-
size DFA. Here one shows that no two states are equivalent, which follows, we have claimed, by showing
that the algorithm of class discovers no inequivalence when looking at 0-and 1-character extensions.

Problem 6 Let L, (forn > 1) be {0,1}*{1}{0,1}"™. Prove that there is an NFA for L, having n + 2
states, but that there is no DFA for L, having 2™ — 1 or fewer states. In a well written English
sentence or two, give a high-level interpretation of your result.

As with the last problem, the first part is constructive; just draw the needed machine. For the second
part, assume for contradiction that there is a (2" — 1)-state DFA M = (Q, %, 4, qo, F'). By the pigeonhole
principle, we know that some two distinct strings z, 2’ € {0,1}" satisfy d(qo, ) = §(qo,2’). Since x and
2’ differ, they do so at some particular bit position ¢ € [1..n] (numbering from 1, starting on the left). Let
xo be the one of z, 2" with z¢[¢] = 0 and let 21 be the one of x, 2’ with z1[¢] = 1. Now consider the strings
Yo = 1o 0° and y; = z; 0°. The second is in L,; the first is not. But we know that 6*(qo, vo) = 6*(qo, ¥1),
getting us our contradiction: this state cannot be both final and nonfinal.

Interpretation of the result: There can be an exponential gap between the size of the smallest NFA for a
language and the size of the smallest DFA for it. Or, said differently, Some languages can be represented
much more efficiently with an NFA than a DFA.



