Midterm - Section 1

Instructions: Please answer the questions succinctly and thoughtfully. Good luck.

— Phil Rogaway

Name:

Signature:

On problem	you got	out of
1		45
2		30
3		25
Σ		100

1 Short Answer

(1) Let M_1 be an n_1 -state DFA and let M_2 be an n_2 -state DFA. Using the procedures given in class and in your text, how many states will be in the NFA M the language of which is $L(M_1) \cup (L(M_2))^*$? Do not make your machine unnecessarily large. Explain your reasoning.

(2) Using the procedure we have seen in class, convert the regular expression $1^* \cup 00$ into an NFA for the same language.

an **NFA** is a 5-tuple M = (

) where:

[45 points]

⁽³⁾ Complete the following, mathematically precise, definition, according to the conventions of our text:

(5) Carefully describe a decision procedure (algorithm) to decide the following language: $L = \{ \langle \alpha \rangle : \alpha \text{ is a regular expression and the smallest NFA for } L(\alpha) \text{ is smaller than the smallest DFA for } L(\alpha) \}.$ (smallest = fewest states)

(6) Write a CFG for the language $L = \{1^i \neq 1^j : i, j \ge 1, i \neq j\}$. Use no more than 6 rules.

(8) Prove or disprove: the following grammar is ambiguous: $S \rightarrow S1S1S2S \mid S1S2S1S \mid S2S1S1S \mid \varepsilon$

(9) Carefully state the pumping lemma for context-free languages.

2 Justified True or False

Put an **X** through the **correct** box. Where it says "Explain" provide a **brief** (but convincing) justification. No credit will be given to correct answers that lack a proper justification. Where appropriate, **make your justification a counter-example**. Throughout, we use L to denote a language (maybe regular, maybe not).

1.	Every CFL has some ambiguous grammar.	True	False
	Explain:		
2.	Every subset of a regular language is regular. Explain:	True	False

3.	For every $n \ge 1$, there is an 2 <i>n</i> -state DFA for the language 0	$\{0,1\}^n$.	
	Explain:	True	False

4.	The intersection of two context-free languages is context free.	True	False
	Explain:		

[30 points]

- 5. In class we exhibited an algorithm to decide if two context-free grammars generate the same language. **True False**
- **6.** If L is context free then some NPDA accepts the complement of L.

False

True

3 A Little Proof

Find the smallest DFA for the language $L = (000)^* \cup (111)^*$. Prove that there is no DFA smaller than yours. (smaller=fewer states.)

[25 points]