Practice Midterm Exam

Instructions: Relax. Smile. Be happy. Then **think** about each question for a few minutes before writing down a **brief**, **correct** answer!

Bon courage!

— Phil Rogaway

Name:

E-mail:

On problem	you got	out of
1		40
2		35
3		25
Σ		100

1 Short Answer

[40 points]

(1) Draw a DFA that accepts $L = \{x \in \{a, b\}^* : x \text{ starts and ends with different characters}\}.$

(2) Using the procedure we have seen in class, convert the following NFA into a DFA that accepts the same language.

(3) You are given a regular expression α . Describe a decision procedure (algorithm) that determines if $L(\alpha)$ contains an odd-length string.

(4) Using the construction given in class and in your text, convert the regular expression $\alpha = (01 \cup 1)^*$ into an NFA for the same language.

(5) Complete the definition (as given in class or your book): A context free grammar is a 4-tuple $G = (V, \Sigma, R, S)$ where¹

(6) Use closure properties to show that $L = \{0^i 1^j 2^j : i, j \ge 0\}$ is not regular.

¹Don't just tell me what V, Σ, R, S are called; tell me what they *are*, mathematically.

(7) Let REG be the language of all (fully parenthesized) regular expressions over the alphabet $\{0, 1\}$.

Thus sample strings in REG are:

$$\varepsilon$$

1
((0 \circ 1) \cup 1)

Prove that REG is CF by giving a CFG for it.

(8) With REG as defined above, prove that REG is not regular by using the pumping lemma.

2 Justified True or False

Put an **X** through the **correct** box. Where it says "**Explain**" provide a **brief** (but convincing) justification. No credit will be given to correct answers that lack a proper justification. Where appropriate, **make your justification a counter-example**. Throughout, we use L and R to denote languages.

1.	If \overline{L} is finite then L is regular.	True	False
	Explain:		
2.	Every regular language can be accepted by an NFA that has ex	actly 1,000,0	00 states
	Explain:	True	False

3.	Let R be regular and let L is a subset of R . Then L is regular		
	Explain:	True	False

[35 points]

4. If L is finite then L* is infinite.Explain:

5. Suppose L has the following property: for some number N, every string $s \in L$ having length at least N can be partitioned into s = xyz such that $|y| \ge 1$ and $xy^i z \in L$ for all $i \ge 0$. Then L is regular. **True False Explain**:

6. Every CFL L can be generated by a CFG G in which every rule $A \rightarrow \alpha$ satisfies $|\alpha| \leq 2$. Explain:

7. For L regular, let d(L) be the number of states in a smallest DFA for L, and let n(L) be the number of states in a smallest NFA for L. Then for any regular language L, $n(L) \leq (d(L))^2$. Explain:

False

True

3 A Closure Property of Regular Languages [25 points]

If L is a language over an alphabet Σ let

Two-Less(L) = { $y \in \Sigma^*$: for some string x having $|x| \le 2$, $xy \in L$ }.

Part A. (A warm-up, just to make sure you understand the definition.) Is one a subset of the other: L and Two-Less(L)? If so, which is a subset of which?

Part B. (A warm-up, just to make sure you understand the definition.) Let $P = \{1^2, 1^3, 1^5, 1^7, 1^{11}, 1^{13}, \dots\}$ be the set of prime numbers, encoded in unary. What's the shortest string in 1^{*} which is not in *Two-Less*(*P*)?

Part C. (Now the main problem. This has nothing to do with Parts A or B.) Prove that if L is regular, than so is Two-Less(L). (Describe any construction you use both in clear English and by a formal definition.)