Problem Set 2 - Due January 17, 2002

Problem 1. Give DFAs for the following languages. Assume $\Sigma=\{0,1\}$.
(a) The set of all strings with 010 as a substring.
(b) The set of all strings which do not have 010 as a substring.
(c) The set of all strings which have an even number of 0 's or an even number of 1 's.
(d) The complement of $\{1,10\}^{*}$.
(e) The binary encodings of numbers divisible by 3 : $\{0\}^{*} \circ\{\varepsilon, 11,110,1001,1100,1111, \ldots\}$.

Problem 2 State whether the following proposition are true or false, proving each answer.
Part A. Every DFA-acceptable language can be accepted by a DFA with an even number of states.

Part B. Every DFA-acceptable language can be accepted by a DFA whose start state is never visited twice.
Part C. Every DFA-acceptable language can be accepted by a DFA no state of which is ever visited more than once.

Part D. Every DFA-acceptable language can be accepted by a DFA with only a single final state.

Problem 3. Give two substantially different proofs of the following: if L_{1} and L_{2} are DFAacceptable then $L_{1} \oplus L_{2}=\left\{w: w\right.$ is in exactly one of L_{1} and $\left.L_{2}\right\}$ is DFA-acceptable.

Problem 4. Suppose that L is DFA-acceptable. Show that the following languages are DFA acceptable, too.

Part A. $\operatorname{Max}(L)=\left\{x \in L\right.$: there does not exist a $y \in \Sigma^{+}$for which $\left.x y \in L\right\}$.
Part B. Echo $(L)=\left\{a_{1} a_{1} a_{2} a_{2} \cdots a_{n} a_{n} \in \Sigma^{*}: a_{1} a_{2} \cdots a_{n} \in L\right\}$.

