Problem Set 5 - Due February 7, 2002

Problem 1. (Postponed from last time)
Part A. Show that there is an $(n+2)$-state NFA for $L_{n}=\left(\Sigma^{*}\right) 0 \Sigma^{n}$. (Take $\Sigma=\{0,1\}$.)
Part B. Prove that any DFA for L_{n} requires at least 2^{n} states.

Problem 2. Page 86, Exercise 1.17, parts b and c.

Problem 3. Page 88, Problem 1.23, parts a and d.

Problem 4. Page 90, Problem 1.41.
Problem 5. Give a decision procedure for the following language:
$L=\{\langle\alpha\rangle: \alpha$ is a shortest regular expression whose language is $L(\alpha)\}$.

