Quiz - Section 1

Instructions: Please answer the questions succinctly and thoughtfully. Good luck.

- Phil Rogaway

Name:

Signature:

On problem	you got	out of
1		30
2		40
3		20
Σ		90

1 Short Answer

(1) Draw a DFA that accepts $L=\left\{x \in\{1,2\}^{*}: x\right.$ has exactly two 2 's $\}$.
(2) List the lexicographically-first six strings in the set $\{0,10\}^{*}$. (Lexicographic order of $\{0,1\}^{*}$ is $\{\varepsilon, 0,1,00,01,10,11,000, \ldots\}$.)
(3) Give a smallest DFA that accepts $\{\varepsilon\}$. The alphabet is $\Sigma=\{a\}$.
(4) Using the procedure we have seen in class ("follow the character and then chase down ε-arrows"), convert the following NFA into a DFA that accepts the same language.
(5) Define what is a language over an alphabet Σ.
(6) Recall that, for $L \subseteq\{0,1\}^{*}, \operatorname{PAL}(L)=\left\{x \in\{0,1\}^{*}: x x^{R} \in L\right\}$. Write a regular expression for $\operatorname{PAL}\left(\{0,1\}^{*}\right)$.

2 Justified True or False

Put an X through the correct box. Where it says "Explain" provide a brief (but convincing) justification. No credit will be given to correct answers that lack a proper justification. Where appropriate, make your justification a counter-example. Throughout, we use L to denote a language (maybe regular, maybe not).

1. $\emptyset^{*}=\emptyset$
True False
Explain:
2. Every subset of a DFA-acceptable language is DFA-acceptable.

Explain:
True
False
3. If $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a DFA and $F=Q$ then $L(M)=\Sigma^{*}$. True False Explain:
4. If L is accepted by an n-state NFA then L is accepted by some 3^{n}-state DFA.

Explain:
True False
5. If $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is an NFA and $M^{\prime}=\left(Q, \Sigma, \delta, q_{0}, F^{\prime}\right)$, where $F^{\prime}=Q-F$, then $L\left(M^{\prime}\right)=\overline{L(M)}$.
Explain:
6. If L is a not-regular language and F is a finite language then $L \cap F$ is a regular language.

Explain:

7. $\left(L^{*}\right)^{*}=L^{*}$.

True False
Explain:
8. For α a regular expression, there is an algorithm to decide if $x \in L(\alpha)$ that is efficient enough to run in a reasonable amount of time on reasonable length x, α.

3 A Closure Property of Regular Languages

[20 points]
If L is a language over an alphabet Σ let

$$
\operatorname{NoPrefix}(L)=\{x \in L: \text { no proper prefix of } x \text { is in } L\} .
$$

Prove that if L is regular then so is NoPrefix (L). (Describe any construction you use both in clear English and by a formal definition.)

