Quiz — Section 2

Instructions: Please answer the questions succinctly and thoughtfully. Good luck.

— Phil Rogaway

Name:

Signature:

On problem	you got	out of
1		30
2		40
3		20
Σ		90

1 Short Answer

[30 points]

(1) Draw a DFA that accepts $L = \{x \in \{1, 2\}^* : x \text{ has at least two 2's}\}.$

(2) List the lexicographically-first six strings in the complement of $\{b, aa, ab, aaa\}$. (Lexicographic order of $\{a, b\}^*$ is $\{\varepsilon, a, b, aa, ab, ba, bb, aaa, \ldots\}$.)

(3) Give a smallest NFA that accepts $\{\varepsilon\}$. The alphabet is $\Sigma = \{a\}$.

(4) Using the procedure we have seen in class, convert the following NFA into a regular expression for the same language.

(5) Define what is an **alphabet**.

(6) Recall that, for $L \subseteq \{0, 1\}^*$, $PAL(L) = \{x \in \{0, 1\}^* : xx^R \in L\}$. Write a regular expression for $PAL(0^*1^*)$.

2 Justified True or False

Put an **X** through the **correct** box. Where it says "**Explain**" provide a **brief** (but convincing) justification. No credit will be given to correct answers that lack a proper justification. Where appropriate, **make your justification a counter-example**. Throughout, we use L to denote a language (maybe regular, maybe not).

- Every DFA-acceptable language can be accepted by a DFA with more accepting states than non-accepting states.
 Explain:
- L* is infinite.
 Explain:
- **3.** If $M = (Q, \Sigma, \delta, q_0, F)$ is an NFA and F = Q then $L(M) = \Sigma^*$ Explain: **True False**
- 4. If L is finite and $\sum_{x \in L} |x| = N$ then L can be accepted by an NFA having N + 1 states. **True** False Explain:

[40 points]

True False

- 5. Every co-finite language can be accepted by a DFA.Explain:
- 6. There exists a language L such that L is nonempty, L is closed under concatenation, and L contains no string of even length.
 Explain:
- 7. L^+ (that is, LL^*) does not contain the emptystring.TrueFalseExplain
- 8. Let $M = (Q, \{0, 1\}, \delta, q_0, F)$ be a DFA and let L = L(M). Suppose $x01001 \in L$ and $y01001 \notin L$. Then it is possible that $\delta^*(q_0, x) = \delta^*(q_0, y)$. **True** False Explain:

3 A Closure Property of Regular Languages [20 points]

If L is a language over an alphabet Σ let

Late
$$(L) = \{x \in \Sigma^* : \text{for some } a \in \Sigma, \text{ string } ax \in L\}.$$

Prove that if L is regular then so is Late(L). (Describe any construction you use both in clear English and by a formal definition.)