Midterm Exam

Instructions: This is a closed book, closed notes exam. Do all **4** problems. Do your best to communicate your ideas clearly and succinctly. Good luck. —Phil Rogaway

Name:

On problem	you got	out of
1		40
2		40
3		20
4		20
\sum		120

1 Short Answer

1.1 Imagine converting the regular expression $\alpha = (00 \cup 001)^*$ into a DFA *M* using the constructions given in class and in your text. How many states will *M* have?

1.2 Now draw the smallest DFA that accepts the language $(00 \cup 001)^*$. (By "smallest" I mean that your machine has the minimum possible number of states.)

1.3 Give a careful, mathematically precise statement of the *pumping lemma* for regular languages.

1.4 Complete the definition: A context free grammar is a 4-tuple G = (, , ,), where

[40 points]

1.5 Give a CFG for $L = \{a^i b^j c^k : i \neq j \text{ or } j \neq k\}.$

1.6 Prove that the language $L = \{a^i b^j c^k : i \neq j \text{ or } j \neq k\}$ is not regular.

1.7 Describe an algorithm that, given regular expressions α_1 and α_2 , these denoting distinct regular languages L_1 and L_2 , finds a shortest string w that is in one of these languages and not in the other.

1.8 Give the first four strings, in lexicographic order, of $(abc \cup bc)^*$

2	Justified True or False	[40]	points]
Put pria	an X through the correct box. Then provide a brief justification te, make the justification a <u>counter-example</u> .	on. When	re appro-
2.1	If $L \subseteq A$ and A is regular, then L is regular. Justification:	True	False
2.2	If L^* is regular then L is regular. Justification:	True	False
2.3	If $M = (Q, \Sigma, \delta, q_0, F)$ is an NFA and $Q = F$ then $L(M) = \Sigma^*$ Justification:	*. True	False
2.4	The complement of a regular language is context free. Justification:	True	False

2.5	Suppose L is an infinite regular language. Then there exists and b such that L contains some string of length $ai + b$ for ex-	ts positive nuvery $i \ge 0$.	mbers a
	Justification:	True	False
2.6	There is a language L for which $L = L^*$. Justification:	True	False
2.7	Every nonempty regular language L is generated by some an Justification:	ibiguous CFG	False
2.8	There is an infinite language L such that whenever x and y a no string in L having length $ x + y $. Justification:	are in L , ther True	there is False

3 Minimal-Size DFA

Let $L = \{\varepsilon, 0, 1, 00, \dots, 1111\}$ be the set of all binary strings of length 4 or less. Show that there is no 4-state DFA that accepts L.

[20 points]

6

4 A Closure Property of Regular Languages [20 points]

For $L \subseteq \{0,1\}^*$ a language, let $S(L) = \{y \in \{0,1\}^* : xy \in L \text{ for some } x \in \{0,1\}^*\}.$ 4.1 Name the strings of S(L) for $L = \{011,0101\}:$ $S(\{011,0101\}) = \{$ }.

4.2 Prove that if L is regular then $\mathcal{S}(L)$ is regular.

Now that wasn't so bad, was it?