## Problem Set 4 - Due February 1, 2005

Problem 1. (pretty hard.) Exhibit a family of languages $\left\{L_{n}: n \geq 1\right\}$ over $\Sigma=\{0,1\}$ such that $L_{n}$ is accepted by an NFA of size $n+2$, but $L_{n}$ is not accepted by any DFA of size $2^{n}-1$. Prove that your family of languages has this property.
It is fine to solve this problem for different additive constants 2 and 1 (meaning $n+c$ and $2^{n}-d$ is fine, for any constants $c, d)$.

Problem 2. Consider applying the product construction to NFAs $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ and $M_{2}=$ $\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ in order to show that the NFA-acceptable languages are closed under intersection.

Part A. Formally specify the product machine $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$.

Part B. Does the construction work-that is, is $L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$ ? Informally argue your conclusion.

Problem 3. Page 86, Exercise 1.16, part (b).

Problem 4 Imagine converting the regular expression $\alpha=(00 \cup 001)^{*}$ into a DFA using the procedures given in class. How many states will the resulting DFA have? Compare this with the size of the smallest DFA that recognizes $L(\alpha)$.

Problem 5 Give an algorithm (specify it as simply and clearly as you can) that answers the following question: given a regular expression $\alpha$ over the alphabet $\{a, b\}$, is $a b a \in L(\alpha)$ ? Make your algorithm as efficient as you can, and comment on its running time.

