Problem Set 4 — Due February 1, 2005

Problem 1. (pretty hard.) Exhibit a family of languages $\{L_n : n \ge 1\}$ over $\Sigma = \{0, 1\}$ such that L_n is accepted by an NFA of size n + 2, but L_n is not accepted by any DFA of size $2^n - 1$. Prove that your family of languages has this property.

It is fine to solve this problem for different additive constants 2 and 1 (meaning n + c and $2^n - d$ is fine, for any constants c, d).

- **Problem 2.** Consider applying the product construction to NFAs $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ in order to show that the NFA-acceptable languages are closed under intersection.
- **Part A.** Formally specify the product machine $M = (Q, \Sigma, \delta, q_0, F)$.
- **Part B.** Does the construction work—that is, is $L(M) = L(M_1) \cap L(M_2)$? Informally argue your conclusion.
- Problem 3. Page 86, Exercise 1.16, part (b).
- **Problem 4** Imagine converting the regular expression $\alpha = (00 \cup 001)^*$ into a DFA using the procedures given in class. How many states will the resulting DFA have? Compare this with the size of the smallest DFA that recognizes $L(\alpha)$.
- **Problem 5** Give an algorithm (specify it as simply and clearly as you can) that answers the following question: given a regular expression α over the alphabet $\{a, b\}$, is $aba \in L(\alpha)$? Make your algorithm as efficient as you can, and comment on its running time.