Problem Set 8 - Due March 8, 2005

Problem 8.1. Prove that a language is decidable iff it can be enumerated in lexicographic order. (A langugage L can be enumerated in lexicographic order if there is a TM that, on input of the empty string, produces an output of $\# x_{1} \# x_{2} \# x_{3} \# \cdots$ where $L=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ and $x_{1}<x_{2}<x_{3}<\cdots$ under the lexicographic ordering of strings.)

Problem 8.2. (Counts as two problems)
A. Show that

$$
L_{A}=\{\langle M, k\rangle: M \text { is a TM which accepts at least one string of length } k\}
$$

is not decidable.
B. Prove that

$$
L_{B}=\{\langle M, k\rangle: M \text { is a TM that loops on at least one string of length } k\}
$$

is not decidable.
C. Let

$$
\begin{gathered}
L_{C}=\{\langle M, k\rangle: M \text { is a TM which accepts some string of length } k, \\
\text { but } M \text { loops on some (other) string of length } k\} .
\end{gathered}
$$

Show that L_{C} is not r.e.. (Assume the underlying alphabet has at least two characters.)
D. Show that L_{C} is not co-r.e., either.

Problem 8.3. (Counts as two problems) Classify the following languages as decidable, r.e. (but not decidable), co-r.e. (but not decidable), or neither r.e. nor co-r.e.. Prove all your answers, giving decision procedures or reductions.
A. $L=\{\langle M\rangle: M$ accepts some even-length string $\}$.
B. $L=\{\langle M, w\rangle: M$ is a TM which uses at most 17 tape squares when run on $w\}$
C. $L=\{\langle M\rangle: M$ accepts some palindrome $\}$.
D. $L=\{\langle M\rangle: M$ never prints a "0" (regardless of the input) $\}$.
E. $L=\{\langle\alpha\rangle: \alpha$ is shortest regular expression for $L(\alpha)\}$.

