Quiz 1

1. Draw a DFA that accepts $L=\left\{x \in\{1,2\}^{*}: x\right.$ has exactly two 2 's $\}$.
2. How many strings are in $\overline{\{a a, a a a\}^{*}}$? Name them. Assume the complement is relative to the alphabet $\Sigma=\{a\}$.
3. Any NFA-acceptable language can be accepted by an NFA with just a single final state.

True False
4. Every finite language is DFA-acceptable.

True
False
5. L^{+}is infinite.

True False
6. If $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a DFA and $F=Q$ then $L(M)=\Sigma^{*}$.
7. If $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is an NFA and $F=Q$ then $L(M)=\Sigma^{*}$.
True False
8. ELIMINATED
9. $\left(L^{*}\right)^{*}=L^{*}$.

True False
10. Let $M=\left(Q,\{0,1\}, \delta, q_{0}, F\right)$ be a DFA and suppose that $\delta^{*}\left(q_{0}, x\right)=\delta^{*}\left(q_{0}, y\right)$. Then $x \in L(M)$ if and only if $y \in L(M)$.

True False

