Quiz 2

Please be careful, as I am unlikely to give partial credit. The True/False questions require no justification. I will give negative points for these, but it will still be your interest, statistically, to guess.

- 1. Imagine converting the regular expression $\alpha = (00 \cup 001)^*$ into a DFA *M* using the constructions given in class and in your text. How many states will *M* have?
- 2. Draw the smallest (=fewest states) DFA that accepts $(00 \cup 001)^*$.

- 3. Define what it means for a CFL language L to be *inherently ambiguous*.
- 4. Define what it means for a CFG $G = (V, \Sigma, R, S)$ to be in *Chomsky Normal Form* (CNF).

5.	If L^* is regular, then L is regular.	True	False
6.	If L^* is context free, then L is regular.	True	False
7.	$L = \{a^i b^j c^k : i \neq j \text{ or } j \neq k\}$ is context free.	True	False
8.	$L = \{a^i b^j c^k : i = j = k\}$ is context free.	True	False
9.	There is known an efficient (polynomial-time) algorithm for answering tion: given a CFG G, is $\varepsilon \in L(G)$?	the following True	ng ques- False
10.	For any CFG G, there is known an efficient (polynomial-time) algorith following question: given x, is $x \in L(G)$?	m for answe	ring the False
11.	If L is CF then $L \circ L$ is accepted by a PDA.		
12.	If L is CF and L' is CF then $L \cap L'$ is CF.	True	False