Problem Set 2 - Due Tuesday, January 17, 2006

Problem 1. Show that at a party of 10 people, there are at least 2 people who have the same number of friends present at the party. Assume (however unrealistically) that friendship is symmetric and anti-reflexive. Hint: Carefully use the pigeonhole principle.

Problem 2 Give DFA for the following languages. Assume $\Sigma=\{0,1\}$.
Part A. The set of all strings that contain an even number of 0's and at most two 1's. (Sipser, 1.4.1)

Part B. The complement of $(0 \cup 11)^{*}$.
Part C. The binary encodings of numbers divisible by 5: $0^{*}\{\varepsilon, 101,1010,1111,10100,11001, \cdots\}$.

Problem 3

Part A. Show that there is a deterministic finite automaton with $n+1$ states that recognizes the language $\left(1^{n}\right)^{*}$. (The alphabet is $\Sigma=\{0,1\}$.)
Part B. Show that there does not exist a smaller deterministic finite automaton for this language. (smaller $=$ fewer states).

Problem 4 State whether the following proposition are true or false, proving each answer.
Part A. Every DFA-acceptable language can be accepted by a DFA with an even number of states.
Part B. Every DFA-acceptable language can be accepted by a DFA whose start state is never visited twice.
Part C. Every DFA-acceptable language can be accepted by a DFA no state of which is ever visited more than once.
Part D. Every DFA-acceptable language can be accepted by a DFA with only a single final state.

Problem 5.

Part A. Given a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ define an associated binary relation \approx on Σ^{*} by saying that $x \approx y$ iff $\delta^{*}\left(q_{0}, x z\right)=\delta^{*}\left(q_{0}, y z\right)$ for all $z \in\{0,1\}^{*}$. Prove that \approx is an equivalence relation.
Part B. Given a DFA-acceptable language L define an associated binary relation \equiv on Σ^{*} by saying that $x \equiv y$ iff $\left(\forall z \in\{0,1\}^{*}\right)(x z \in L \Leftrightarrow y z \in L)$. Prove that \equiv is an equivalence relation.
Part C. Prove that if L is DFA-acceptable then the associated equivalence relation \equiv has a finite number of equivalence classes.

