Problem Set 3 — Due Tuesday, January 24, 2006

Problem 1. Give minimal-size NFA (size = # of states) for the following languages. Assume $\Sigma = \{0, 1\}$.

- 1. $\{w : w \text{ contains an even number of } 0s, \text{ or exactly two } 1s.\}$
- 2. The language $0^*1^*0^*0$.
- **Problem 2.** Use the construction given in class to convert the following two nondeterministic automata to equivalent deterministic finite automata.

Problem 3. Suppose that L is DFA-acceptable. Show that the following languages are DFA acceptable, too.

Part A. Let $\Sigma^+ = \{x_1 x_2 \cdots x_k : k \ge 1 \text{ and each } x_i \in \Sigma\}.$ $Max(L) = \{x \in L : \text{ there does not exist a } y \in \Sigma^+ \text{ for which } xy \in L\}.$

Part B. $Echo(L) = \{a_1a_1a_2a_2\cdots a_na_n \in \Sigma^* : a_1a_2\cdots a_n \in L\}.$

Part C. Comb_{even} $(L) = \{a_2 a_4 a_6 \cdots a_n \in \Sigma^* : a_1 a_2 a_3 \cdots a_n \in L\}, \text{ for } n \text{ is even.}$

Problem 3.

- (a) Show that there is an (n+2)-state NFA for $L_n = (\Sigma^*)0\Sigma^n$. (Take $\Sigma = \{0, 1\}$.)
- (b) Prove that any DFA for L_n requires at least 2^n states.
- **Problem 4.** Let L be a language over Σ and define the language $PAL(L) = \{x \in \Sigma^* : xx^R \in L\}$. If L is DFA-acceptable, is PAL(L) necessarily DFA-acceptable? Prove your answer.