Problem Set 9 — Due Tuesday, March 7, 2006

- **Problem 1.** Let A and B be two disjoint languages. The recursive language \mathcal{A} recursively separates A and B if $A \subseteq \mathcal{A}$ and $B \cap \mathcal{A} = \emptyset$.
 - A. Show that any two disjoint co-r.e. languages are separable by some decidable language.
 - **B.** Show that $A = \{\langle M \rangle : M(\langle M \rangle) = \text{Yes}\}$ and $B = \{\langle M \rangle : M(\langle M \rangle) = \text{No}\}$ are not recursively separable.

Problem 2.

A. Show that

 $L_A = \{ \langle M, k \rangle : M \text{ is a TM which accepts at least one string of length } k \}$

is not decidable.

B. Prove that

 $L_B = \{ \langle M, k \rangle : M \text{ is a TM that loops on at least one string of length } k \}$

is not decidable.

 \mathbf{C} . Let

 $L_C = \{ \langle M, k \rangle : M \text{ is a TM which accepts some string of length } k,$ but M loops on some (other) string of length $k \}.$

Show that L_C is not acceptable. (Assume the underlying alphabet has at least two characters.)

- **D.** Show that L_C is not co-acceptable, either.
- Problem 3. Counts as two problems. Classify the following languages as decidable, acceptable (but not decidable), co-acceptable (but not decidable), or neither acceptable nor co-acceptable. Prove all your answers, giving decision procedures or reductions.
 - **A.** $L = \{ \langle M \rangle : M \text{ accepts some even-length string} \}.$
 - **B.** $L = \{ \langle M, w \rangle : M \text{ is a TM which uses at most 17 tape squares when run on } w \}$
 - **C.** $L = \{ \langle M \rangle : M \text{ accepts some palindrome} \}.$
 - **D.** $L = \{ \langle M \rangle : M \text{ never prints a "0" (regardless of the input)} \}.$
 - **E.** $L = \{ \langle \phi \rangle : \phi \text{ is a Boolean formula which has$ *no* $satisfying assignment } \}.$
 - **F.** $L = \{\langle G_1, G_2 \rangle : G_1 \text{ and } G_2 \text{ are CFGs which generate the same CFL.}\}.$ You may use the fact that $\{\langle G \rangle : G \text{ is a CFG and } L(G) = \Sigma^*\}$ is undecidable.
 - **G.** $L = \{ \langle \alpha \rangle : \alpha \text{ is shortest regular expression for } L(\alpha) \}.$