Problem Set 9 - Due Tuesday, March 7, 2006

Problem 1. Let A and B be two disjoint languages. The recursive language \mathcal{A} recursively separates A and B if $A \subseteq \mathcal{A}$ and $B \cap \mathcal{A}=\emptyset$.
A. Show that any two disjoint co-r.e. languages are separable by some decidable language.
B. Show that $A=\{\langle M\rangle: M(\langle M\rangle)=$ Yes $\}$ and $B=\{\langle M\rangle: M(\langle M\rangle)=$ No $\}$ are not recursively separable.

Problem 2.

A. Show that

$$
L_{A}=\{\langle M, k\rangle: M \text { is a TM which accepts at least one string of length } k\}
$$

is not decidable.
B. Prove that

$$
L_{B}=\{\langle M, k\rangle: M \text { is a TM that loops on at least one string of length } k\}
$$

is not decidable.
C. Let

$$
\begin{gathered}
L_{C}=\{\langle M, k\rangle: M \text { is a TM which accepts some string of length } k, \\
\text { but } M \text { loops on some (other) string of length } k\} .
\end{gathered}
$$

Show that L_{C} is not acceptable. (Assume the underlying alphabet has at least two characters.)
D. Show that L_{C} is not co-acceptable, either.

Problem 3. Counts as two problems. Classify the following languages as decidable, acceptable (but not decidable), co-acceptable (but not decidable), or neither acceptable nor co-acceptable. Prove all your answers, giving decision procedures or reductions.
A. $L=\{\langle M\rangle: M$ accepts some even-length string $\}$.
B. $L=\{\langle M, w\rangle: M$ is a TM which uses at most 17 tape squares when run on $w\}$
C. $L=\{\langle M\rangle: M$ accepts some palindrome $\}$.
D. $L=\{\langle M\rangle: M$ never prints a "0" (regardless of the input) $\}$.
E. $L=\{\langle\phi\rangle$: ϕ is a Boolean formula which has no satisfying assignment $\}$.
F. $L=\left\{\left\langle G_{1}, G_{2}\right\rangle: G_{1}\right.$ and G_{2} are CFGs which generate the same CFL. $\}$. You may use the fact that $\left\{\langle G\rangle: G\right.$ is a CFG and $\left.L(G)=\Sigma^{*}\right\}$ is undecidable.
G. $L=\{\langle\alpha\rangle: \alpha$ is shortest regular expression for $L(\alpha)\}$.

