Quiz 1

- 1. List, in lexicographic order, the first five strings of $\{aa, b\}^*$.
- 2. Draw a smallest DFA that accepts $L = \{x \in \{0,1\}^* : \text{the number that } x \text{ represents, in binary, is divisible by } 3\} = \{0\}^* \{\varepsilon, 11, 110, 1001, \ldots\}$. (smallest = fewest states)
- 3. Draw a smallest NFA for the language $L = \{01, 001\}$.
- 4. Every NFA-acceptable language can be accepted by an NFA with just a single final state.
- 5. L^* is infinite.
- 6. $(L^*)^* = L^*$.
- 7. If $M = (Q, \Sigma, \delta, q_0, F)$ is a DFA and F = Q then $L(M) = \Sigma^*$.
- 8. If L is accepted by an *n*-state NFA then L is accepted by some $2 + 2^n$ -state DFA.
- 9. If L is DFA-acceptable and F is finite then $L \cap F$ is a DFA-acceptable.
- 10. Let $M = (Q, \{0, 1\}, \delta, q_0, F)$ be a DFA and suppose that $\delta^*(q_0, x) = \delta^*(q_0, y)$. Let $z \in \{0, 1\}^*$. Then $xz \in L(M)$ iff $yz \in L(M)$.