Quiz 1

1. List, in lexicographic order, the first five strings of $\{a a, b\}^{*}$.
2. Draw a smallest DFA that accepts $L=\left\{x \in\{0,1\}^{*}\right.$: the number that x represents, in binary, is divisible by 3$\}=\{0\}^{*}\{\varepsilon, 11,110,1001, \ldots\}$. (smallest $=$ fewest states)
3. Draw a smallest NFA for the language $L=\{01,001\}$.
4. Every NFA-acceptable language can be accepted by an NFA with just a single final state.
5. L^{*} is infinite.
6. $\left(L^{*}\right)^{*}=L^{*}$.
7. If $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a DFA and $F=Q$ then $L(M)=\Sigma^{*}$.
8. If L is accepted by an n-state NFA then L is accepted by some $2+2^{n}$-state DFA.
9. If L is DFA-acceptable and F is finite then $L \cap F$ is a DFA-acceptable.
10. Let $M=\left(Q,\{0,1\}, \delta, q_{0}, F\right)$ be a DFA and suppose that $\delta^{*}\left(q_{0}, x\right)=\delta^{*}\left(q_{0}, y\right)$. Let $z \in$ $\{0,1\}^{*}$. Then $x z \in L(M)$ iff $y z \in L(M)$.
