Quiz 2

Try to get each questions fully right — *likely no partial credit will be given.*

1. Using the procedure explained in class and in your text, convert the following regular expression into an NFA for the same language: $(ab)^*$. Do not simplify.

2. Draw a smallest DFA that accepts $L = \{x \in \{0,1\}^* : \text{the number that } x \text{ represents, in binary, is divisible by } 3\} = \{0\}^* \{\varepsilon, 11, 110, 1001, \ldots\}$. (smallest = fewest states)

3. Every DFA-acceptable language can be accepted by an DFA with	th just a single final state.
Explain:	True False
4. If α and β are regular expressions then there is a regular expression	sion for $L(\alpha) \cap L(\beta)$.
Explain:	True False
5. If $M = (Q, \Sigma, \delta, q_0, F)$ is an NFA and $F = Q$ then $L(M) = \Sigma^*$.	True False
Explain:	
6. If L is accepted by an <i>n</i> -state NFA then \overline{L} is accepted by some	<i>n</i> -state NFA.
Explain:	True False
7. If L is DFA-acceptable and F is finite then $L \cap F$ is a DFA-acceptable.	
Explain:	True False

8. Carefully state the **pumping lemma** for regular languages. (Any form of the pumping lemma is fine. Don't use the word "pumps." No credit if quantifiers are wrong on ambiguous.)