Quiz 3

Try to get each questions fully right — likely no partial credit will be given.

1. Define what it means for a language L to be **recursively enumerable** (aka, Turing acceptable).

2. Clearly state the **Church-Turing thesis**.

3.	The Turing-decidable languages are closed under complement.	True	False
4.	Any Turing-acceptable language is Turing-decidable.	True	False
5.	If M is a TM and $L = L(M)$ and there is some input x such that M , on visits a configuration C more than once, then M does not decide L .	input x , ev True	rentually False
6.	If M is a TM and $L = L(M)$ and there is some input x such that M , on visits a configuration C more than once, then L is not decidable.	input x , ev True	rentually False
7.	Turing machine can accept infinite languages by virtue of having an states.	infinite nu True	mber of False
8.	Deterministic and probabilistic Turing Machines accept the same class	s of languag	ges.

True False