Problem Set 2 - Due Tuesday, January 24, 2012

For any of the following problems, should you need to assume the existence of a non-regular language A, you may do so.

Problem 1. For the following problems, do not "simplify" your work (except you should please not indicate unreachable states in any DFA)-show everything.
(a) Using the procedure shown in class, convert the following NFA into a DFA for the same language.

(b) Using the procedure shown in class, convert the same NFA into a regular expression for the same language.
(c) Using the procedure shown in class, convert the following regular expression into an NFA for the same language:

$$
(0 \cup 01)^{*} \cup 10
$$

Problem 2. Let $\mathcal{F}(L)=\left\{x \in L:\right.$ there exists a $y \in \Sigma^{+}$for which $\left.x y \in L\right\}$.
(a) What is $\mathcal{F}\left(\{0,1\}^{*}\right)$? What is $\mathcal{F}(\{\varepsilon, 0,1,00,01,111,1110,1111\})$?
(b) Prove that if L is DFA-acceptable then $\mathcal{F}(L)$ is too.

A prefix of a string y is a string x such that $y=x x^{\prime}$ for some x^{\prime}. A prefix is proper if it is not the empty string. For any language L, let $\mathcal{G}(L)=\{w \in L \mid$ no proper prefix of w is in $L\}$.
(c) What is $\mathcal{G}\left(\{0,1\}^{*}\right)$? What is $\mathcal{G}(\{\varepsilon, 00,01,110,0100,0110,1110,1111\})$?
(d) Prove that if L is DFA-acceptable then so is $\mathcal{G}(L)$.

Problem 3. Let $L_{n}=\left\{1^{i}: 0 \leq i<n\right\}$ (recall that $1^{0}=\varepsilon$). Prove that there is a DFA M having n accepting states that accepts L. Then prove that L cannot be accepted by any DFA having fewer accepting states.

Problem 4. Consider applying the product construction to NFAs $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ and $M_{2}=$ $\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ in order to show that the NFA-acceptable languages are closed under intersection.
(a) Formally specify the product machine $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$.
(b) Does the construction work? that is, is $L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$? Prove your result either way.

Problem 5. Let $h: \Sigma \rightarrow \Sigma^{*}$ and let $L \subseteq \Sigma^{*}$ be a language. Let $h(L)=\left\{h\left(a_{1}\right) \cdots h\left(a_{n}\right): a_{1} \cdots a_{n} \in L\right\}$.
(a) Is it true that if L is regular, then so must be $h(L)$? Prove your answer.
(b) Is it true that if $h(L)$ is regular, then so must be L ? Prove your answer.

