Quiz 3

Your name:

Write neatly and be careful. Questions will be worth varying numbers of points. Remember that decidable = Turing decidable = recursive; and that acceptable = Turing acceptable = r.e. = recursively enumerable. Remember that $A_{\text{TM}} = \{\langle M, w \rangle : TM \ M \ accepts \ w\}.$

1. Give a precise definition for what it means to say: "language L is Turing decidable".

- **2.** Give a precise **definition** for $A \leq_{\mathrm{m}} B$ ("language A many-one reduces to language B"):
- **3.** According the conventions used in class, a TM is a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ where δ : \longrightarrow \bigcirc . (Fill in the domain and range).
- 4. Fill in solid the correct answer. No explanation is needed.

(a) $A_{\rm TM}$ is r.e.	True	False
(b) A_{TM} is co-r.e.	True	False
(c) If $A \leq_{\mathrm{m}} B$ and B is decidable then A is decidable.	True	False
(d) If $A \leq_{\mathrm{m}} B$ and A is decidable then B is decidable.	True	False
(e) To show L undecidable, it suffices to show $A_{\text{TM}} \leq_{\text{m}} L$.	True	False
(f) $L = \{ \langle M \rangle : M \text{ is a TM and } L(M) \text{ is finite} \}$ is decidable.	True	False
(g) $L = \{ \langle M \rangle : M \text{ is a TM and } L(M) \text{ is r.e.} \}$ is decidable.	True	False
(h) $L = \{ \langle G \rangle : G \text{ is a CFG and } L(G) = \emptyset \}$ is decidable.	True	False
(i) Suppose $A \leq_{\mathrm{m}} B$ and $B \leq_{\mathrm{m}} A$. Then $A = B$.	True	False
(j) If $A \leq_{\mathrm{m}} B$ and $B \leq_{\mathrm{m}} C$ then $A \leq_{\mathrm{m}} C$.	True	False
(k) If A is context free then it is r.e.	True	False
(l) If A is regular then $A \leq_{\mathrm{m}} \{0, 1\}$.	True	False