ECS 127 — Midterm 1 Solutions — Spring 2024

- 1. For Diffie-Hellman secret-key exchange we fixed a large prime number p and a generator g for \mathbb{Z}_p^* (the multiplicative group of integers mod p). What follows is then done in that group: Alice selects $a \leftarrow \{1, 2, \ldots, p-1\}$ and computes $A = g^a$. She sends A to Bob. Bob selects $b \leftarrow \{1, 2, \ldots, p-1\}$ and computes $B = g^b$. He sends B to Alice. The parties will share $K = g^{ab}$, which Alice learns by computing B^a and Bob learns by computing A^b .
- 2. Suppose Alice encrypts a message $M \in \{0, 1, \dots, 99\}$ to a ciphertext C = M + K (mod 100) using a uniformly random key $K \in \{0, 1, \dots, 127\}$. This is the only message ever sent using the key K. The method doesn't achieve perfect privacy. For example, $\Pr[C = 0 \mid M = 0] = \boxed{2/128}$ and $\Pr[C = 0 \mid M = 42] = \boxed{1/128}$
- 3. In our class, $R{\twoheadleftarrow}S$ means

R is chosen (uniformly) at random from (the finite set or distribution) S

while $\mathcal{A}(R) \Rightarrow 1$ means (the event that) A, on input R, outputs 1

4. Recall the DES algorithm, DES: $\{0,1\}^{56} \times \{0,1\}^{64} \rightarrow \{0,1\}^{64}$. Name two of its **undesirable** characteristics and, for each, explain *why* the attribute is undesirable.

a. the 56-bit key space is too small, making exhaustive key-search practical

- b. the design criteria were secret, which damaging trust in the algorithm.
- c. the hardware-centric design is slow in software and decreases how much the algorithm is used.
- d. Could have been better designed to withstand linear cryptanalysis, which wasn't know at the time of the algorithm's design. Better S-boxes could have fixed this.
- Not discussed in class, but inferable from things said in class: The 64-bit blocksize is inconveniently small, opening the door for practical birthday attacks when the algorithm is used in conventional modes.
- f. *Not discussed in class:* It's hard to implement in SW without big tables, which can have cache effects and result in data-dependent running times, enabling some cryptanalysis.
- 5. Define a blockcipher $E: \{0, 1\}^{256} \times \{0, 1\}^{128} \to \{0, 1\}^{128}$ that does a great job of concealing the key—no adversary can do well at guessing it—yet E is, nonetheless, totally insecure in the ind-sense. $E_K(X) = X$
- 6. The number of permutations on $\{0,1\}^{128}$ is $|\text{Perm}(128)| = 2^{128}!$ The number of cycles on $\{0,1\}^{128}$ is $|\text{Cycl}(128)| = (2^{128}-1)!$
- 7. You are working in $GF(2^8)$, the finite field with 2^8 points, representing points using the irreducible polynomial $g(\mathbf{x}) = \mathbf{x}^8 + \mathbf{x}^4 + \mathbf{x}^3 + \mathbf{x} + 1$. What point will you get if you square $s = 00010000 = \mathbf{x}^4$? Write it in binary. $\mathbf{x}^8 = 00011011$

- 8. Let $E : \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a blockcipher. Suppose you design a PRG $G : \{0,1\}^k \to \{0,1\}^\infty$ that depends on E. You want to prove that if E is a secure PRP then G is a secure PRG. To do this you would need to provide a *reduction*. The reduction will start with an adversary A that attacks \overline{G} and will transform it into an adversary B that attacks \overline{E} . You'll then prove that if $\overline{\mathbf{Adv}_G^{\mathrm{prg}}(A)}$ is large then $\overline{\mathbf{Adv}_E^{\mathrm{prg}}(B)}$ is large, too.
- 9. In a homework solution we applied Shamir secret-sharing byte-wise to a message $M = M_1 \cdots M_m$, each $M_i \in \{0, 1\}^8$. In what way was that approach better than just applying Shamir's scheme directly to M?

It more simpler and more efficient to work in $GF(2^8)$ than to work in some potentially *huge* finite field that contains a point representing M.

Sketch an alternative method to secret-share $M = M_1 \cdots M_m$ that requires the dealer to only use Shamir secret-sharing on a 32-byte string. The dealer ...

shares out a uniformly 32-byte random key K and a ciphertext $C \leftarrow \mathcal{E}_K(M)$ that is an encryption of M under K. One way to do the encryption would be $C \leftarrow G(K) \oplus M$ for a PRG G stretching 32-bytes to |M| bits.

- 10.1) \checkmark In an ind-secure symmetric encryption scheme, an encryption of Hello and an encryption of mom might be easy for an adversary to tell apart. These are strings of different lengths
- 20.2) \checkmark In an ind-secure symmetric encryption scheme, ciphertexts might always start with the word ciphertext.
- 30.3) \checkmark Parties A, B, and C securely compute their average salary s. Then A will necessarily learn, in addition to s, the average salary s_{BC} of parties B and C.
- 40.4) ind-security implies ind\$-security (indistinguishability from random bits).
- 50.5) Perfect privacy, discussed near the beginning of our class, is the strongest possible notion of encryption-scheme security.
- 60.6) \checkmark If an encryption scheme's key space is smaller than its message space, it can't achieve perfect privacy.
- 70.7) ChaCha20 has been proven secure: we know that reasonable adversaries have small prp-advantage in attacking it. I mean to write prf-advantage, but it doesn't really matter: primitives like ChaCha20 don't themselves have any sort of provably-security claims.
- 80.8) $|\checkmark|$ If an asymptotically secure PRG exists than $P \neq NP$.
- 90.9) \checkmark DES would remain invertible even if each S-box were replaced by the function $S(x_1x_2x_3x_4x_5x_6) = (x_1 + 2x_2 + 3x_3 + 5x_4 + 7x_5 + 11x_6) \mod 16$ (treated as a 4-bit string).
- 100.10) \checkmark On a homework we saw that, experimentally, RC4's output *is* distinguishable from truly random bits.
- 110.11) \checkmark If $E : \{0,1\}^{256} \times \{0,1\}^{256} \rightarrow \{0,1\}^{256}$ has good security as a PRP then it has good security as a PRF. This is the PRP/PRF switching lemma; you're good until nearly $\sim 2^{128}$ queries, which is enormous.

- 120.12) CBC-mode encryption with a counter IV is ind-secure if its underlying blockcipher is prp-secure. *ind-security but not ind\$-security*
- 130.13) Adversary \mathcal{A} queries a random function $f \leftarrow \{0, 1\}^{128}$ at 2^{80} different points. The answers returned are probably all distinct (different from one another).
- 140.14) \square An oracle \mathcal{O} computes some deterministic function f of the query X it is asked; it immediately returns f(X). Oracles are more general than functions: they can be stateful and probabilistic.
- 150.15) \checkmark The following exemplifies a *hybrid argument*: Let $\Pr[A^{\mathcal{O}_1} \Rightarrow 1] \Pr[A^{\mathcal{O}_0} \Rightarrow 1] = \delta$. Then for any oracle \mathcal{O} you devise, either $\Pr[A^{\mathcal{O}_1} \Rightarrow 1] - \Pr[A^{\mathcal{O}} \Rightarrow 1] \ge \delta/2$ or $\Pr[A^{\mathcal{O}} \Rightarrow 1] - \Pr[A^{\mathcal{O}_0} \Rightarrow 1] \ge \delta/2$.
- 160.16) \checkmark CTR mode encryption and CBC mode encryption are both *malleable*.