
ECS 127: Cryptography ps5-soln
UC Davis — Phillip Rogaway 9 May 2024

Problem Set 5 Solutions

Problem 12. (Asked by a student, more or less.) For q ≥ 1 an integer constant, suppose we define the

q-query PRF-security of F : K × {0, 1}n → {0, 1}n by way of

Advq
F (A) = Pr[AReal(·) ⇒ 1]− Pr[ARand(·) ⇒ 1]

where the first oracle begins by choosing a random K↞K and subsequently, for the first q queries, answers

any query Real(X) with FK(X); and the second oracle begins by choosing a random ρ↞Func(n) and

subsequently, for the first q queries, answers any query Rand(X) with ρ(X); and where both oracles

answer queries beyond the q-th query with the empty string. In short, it is our usual PRF security notion

except that the oracle shuts up after answering q queries.

Part A. Construct a PRF F that has perfect 1-query PRF security but terrible 2-query PRF security.

Let K = {0, 1}n and define FK(X) = K ⊕X. To an adversary making a first query to FK(·),
the result is uniformly random and every adversary gets 0 advantage. But if the addversary
gets a second query, the result is totally predictable, as the first query gave away the key. As a
concrete attack, let adversary A ask its oracle 0n, ketting a response K; then ask a second query
of 1n, ketting a response Y . Return 1 if Y = K; return 0 otherwise. The adversary’s advantage
is 1− 1/2n.

Part B. Generalize: for 1 ≤ q ≪ 2n, construct a PRF F that has perfect q-query PRF security but

terrible (q + 1)-query PRF security.

Let K = {0, 1}nq and regard a key K = K0 ∥ · · · ∥ Kq−1 as specifying q n-bit strings, or,
equivalently, the key K = (K0, . . . ,Kq−1) names q points of GF(2n). Let this key K specify
a polynomial PK(X) = K0 +K1X + · · · +Kq−1X

q−1 over the field GF(2n). Define FK(X) =
PK(X). As with Shamir’s secret-shring scheme, for a uniformly random K, the values of PK

evaluated at any q distinct points will be uniformly random and independent of one another.
But at that point the polynomial is fully determined; the adversary can identify it by Lagrange
interpolation. Subsequent queries will therefore have a known value, which the adversary can
compute. Asking q + 1 queries, then, the adversary sketched will get advantage 1− 1/2n.

Problem 13. Bob proposes a 128-bit blockcipher, Tango32, that works like this. It has 16 S-boxes,
S1, . . . , S16, each a permutation mapping 8-bits to 8-bits. It uses a 128-bit key that gets mapped into 32
subkeys, K1, . . . ,K32, each 128 bits. To encrypt an input block X, for each of 32 rounds i, the cipher:

1. Replace X by X ⊕Ki;
2. Replace the j-th byte of X, X[j], by Sj [X[j]] (for each 1 ≤ j ≤ 16);
3. Circularly rotate X by ci byte position to the left, X←X⟨⟨⟨8ci, where ci ∈ [0..15].

The ciphertext is the final value of X.

Bob has carefully designed Tango32’s S-boxes, key schedule, and rotation constants.

2 Problem Set 5 Solutions

Break Bob’s design using at most a few hundred plaintext/ciphertext pairs. Your break should be so bad

that you can subsequently decrypt anything that’s encrypted with the same key.

Tango32 has terrible diffusion: whatever happens to a byte stays within that byte, however it
gets shifted around. (Good diffusion means that changing a bit in the plaintext soon impacts
what’s happening to other bits. But that’s not true for Tango, since all the shifts and S-box
applications are along byte boundaries.)

More concretely, based on the constants ci, byte-j of input X will only impact byte dj of the
output Y , for some dj associated to the scheme. You can compute each dj from the ci values:
dj = i −

∑
i ci (mod 16) (with byte-0 a synonym for byte-16). Note that even if the ci values

were secret or depended on the key, you could still find the dj values by making 16 calls to your
EK oracle, asking A16, BA15, ABA14, A2BA13, . . . , A15B, where A and B are distinct bytes.

Now, knowing that byte i is only going to impact byte di, just ask your oracle B16 for each byte
B ∈ {0, 1}8. From these 256 queries we form a table of how each byte j will get reflected in
byte dj of output: you compute the ciphertext byte C[j, x] that you’ll see in byte dj when the
plaintext has an x at byte j.

Given this table C, you can can encipher or decipher any string you like. You didn’t compute K,
but you don’t need to.

Problem 14. CBC-Chain is a stateful blockcipher-based mode of operation. To encrypt, we use CBC

with an IV that is the last ciphertext block produced from the prior encryption. Initially, the IV is a

random string.

Part A. Formally define key generation, encryption, and decryption for CBC-Chain[E] given a blockci-

pher E : {0, 1}k × {0, 1}n → {0, 1}n.

Define CBC[E] = (K, E ,D) by

algorithm K
return K↞{0, 1}k

algorithm EK(M)
static C0↞{0, 1}n
M1 · · ·Mm ←M where |Mi|=n
for i← 1 to m do

Ci ← EK(Mi ⊕ Ci−1)
C ← C0C1 · · ·Cm

C0 ← Cm

return C

algorithm DK(C)
C0C1 · · ·Cm ← C where |Ci|=n
for i← 1 to m do

Mi ← E−1
K (Ci)⊕ Ci−1

M ←M1 · · ·Mm

return M

Part B. Show that CBC-Chain[E] is never IND-secure by giving a devastating, efficient attack on it.

Ask a query M1 = 0n to get a response C0C1. (With a good encryption oracle, EK(C0) = C1.)
Now ask a query of M ′

1 = C1⊕C0 to get a response C ′
0C

′
1. If C

′
1 = C1 then return 1; otherwise,

return 0. It is easy to check that the attack described will always return 1 when given a “real”
encryption oracle; and will rarely return 1 when given a “fake” (0-encrypting) oracle (the latter
probability is about 2/2n plus the insecurity of E as a PRP).

ps5-soln: Problem Set 5 Solutions 3

Problem 15. Can a blockcipher E : {0, 1}128 × {0, 1}128 → {0, 1}128 be secure as a PRP if it has the

following characteristics? Briefly justify each answer. Where necessary, interpret numbers as 128-bit

strings.

Part A. The first bit of EK(X) doesn’t depend on the last bit of X.

No, E can’t be a secure PRP. An adversary can ask a pair of queries X0 and X1 in the
blockcipher’s domain that differ only in their last bit. If the responses have the same first bit,
answer 1; otherwise, answer 0. The adversary’s advantage will be just less than to than 0.5: it
will be 1− 2n−1/(2n− 1). (Why is the advantage not exactly 1/2?) It can bump this advantage
way up by asking many questions of the form X0, X1 for different values of X.

Part B. The first bit of EK(X) doesn’t depend on the last bit of K.

Yes, E might be secure as a PRP. Take any secure PRP E : K× {0, 1}n → {0, 1}n and modify
it so that there is an extra bit of key that is simply ignored: E′

K0(X) = E′
K1(X) = EK(X).

Then, as a PRP, E′ is just as secure as E, but it has the defect stated in this problem.

Part C.
⊕10

i=1 EK(i) = 0.

No, E can’t be secure as a PRP. If E is a good as a PRP it is good as a PRF (as long as the
number of queries stays away from the birthday bound); and if E had the specified property, we
could easily distinguish it from a random function by asking the obvious ten queries.

Part D. E−1
K (0) = EK(1).

No, E can’t be secure as a PRP. An adversary can first ask its oracle 1, getting a response Y ,
and next ask its oracle Y , getting a response Z. If Z = 0 then the adversary returns 1; otherwise,
it returns 0. If E is defective in the manner described then the oracle will always return 1; if E
is a random permutation it will almost never return 1.

Part E. EK(K) = K.

Yes, E might still be a good PRP. Take any secure PRP E : {0, 1}n × {0, 1}n → {0, 1}n
and modify it to a PRP E′ by saying that E′

K(K) = K and E′
K(E−1

K (K) = EK(K) and
E′

K(X) = EK(X) otherwise. Intuitively, the adversary is unlikely to notice the modification
from E to E−1 because noticing that modification requires asking a query ofK in the unmodified
cipher or a query that returns K in the unmodified cipher.

