
ECS 127: Cryptography ps6-soln
UC Davis — Phillip Rogaway 23 May 2024

Problem Set 6 Solutions

Problem 17. Fix a blockcipher E with an 8-byte (64-bit) blocksize. Consider the following general-

ization of CBC to allow the encryption of arbitrary byte strings. Given a byte string M , let pad(M) be

M followed by enough bytes to take you to the next multiple of eight bytes, where the extra bytes are one

of: 01, or 02 02, or 03 03 03, and so on, up to 08 08 08 08 08 08 08 08 (all of these constants written in

hexadecimal). Let CBC2 be the variant of CBC$ encryption that encrypts M by applying CBC, over E,

with a uniformly random IV, to pad(M).

The CBC2 method is specified in Internet Standard RFC 2040. Note that a CBC2 ciphertext for M will

have the form C = IV ∥ C ′ where |IV| = 64 and |C ′| is the least multiple of 64 exceeding |M |.

17.1. Do you think that CBC2 achieves “good” (at least birthday-bound) ind$-security when E is a good

PRP? Why or why not?

Yes, CBC2 is ind$ secure. Let Af be an adversary that attacks CBC2. We construct another
adversary Bg that attacks CBC$ as follows. The adversary B runs A as a black box. For each
query X of A, the adversary B will pad the plaintext as indicated by CBC2, and then gives
g(pad(X)) to A. Finally, B answers whatever A answers. The adversary B is almost as efficient
as A, and Advind$

CBC$(B) = Advind$
CBC2(A).

17.2. Write a careful fragment of pseudocode for an algorithm D to decrypt a byte string C under

CBC2. Have D(K,C) return the distinguished symbol ⊥ if it is provided an invalid ciphertext; otherwise,

it returns a byte string M .

Indexing the bits of strings left-to-right starting at 1 and writing [i] for the number i written as
an 8-bit byte, the pseudocode is as follows:

Algorithm DecryptK(C)
if |C| < 128 or |C| ̸≡ 0 (mod 64) then return⊥
Parse C into C0C1 · · ·Cm with |Ci| = 64
for i← 1 tom doPi ← E−1

K (Ci)⊕ Ci−1

for i← 1 to 8 do

ifPm[65− 8i..64] = [i]i thenPm ← Pm[1..65− 8i], returnP1 · · ·Pm

return⊥.

17.3. Suppose an adversary is given an oracle, Valid, that, given a ciphertext C, returns the bit “1”

if C is valid, meaning D(K,C) ∈ {0, 1}∗, and returns the bit “0” if it is not, meaning D(K,C) = ⊥.
Show how to use the oracle to decipher a block Y = EK(X) for an arbitrary eight-byte X. (Hint: all

your queries to the Valid oracle will be 16 bytes, and I don’t mind if you make hundreds or thousands of

them.)

For each string s ∈ {0, 1}8, make a query IV∥Y to Valid, with IV = 056∥s. Eventually, the
oracle will answer 1, because there exists a string s such that IV ⊕X ends with [1]. However,
if the oracle answers 1 then X ⊕ IV can end with 01 or 0202 or 030303, and so on. For each
i = 1, . . . , 7, let xi be the 8-byte string obtained by toggling the ith byte of the IV. Make queries

2 Problem Set 6 Solutions

xi∥Y , for i = 1, . . . 7. If the oracle answers 0 to query x1∥Y then IV⊕X ends with (08)8 (Why?).
Otherwise, if the oracle answers 1 to query x1∥Y but then answers 0 to query x2∥Y , the string
IV⊕X must end with (07)7, and so on. We can therefore determine the last byte of X. Next,
for each s ∈ {0, 1}8, make a query IV∥Y , with IV = 048∥s∥X[57 : 64] ⊕ 02. The oracle will
output 1 if and only if X ⊕ IV ends with 0202. We therefore determine the second last byte
of X. Repeating this trick to obtain the remaining bytes of X. The total number of queries is
8 · 28 + 7 = 2055.

17.4. Show how to decrypt any ciphertext C = CBC2(K,M) given a Valid oracle.

Follow algorithm DecryptK(·) to decrypt C. Each time the algorithm requires computing
E−1

K (Y), use the algorithm in part (C) to find the answer. If the plaintext has m blocks then
the total number of oracle queries is 2055m.

17.5. What advice would you give to a security practitioner who was considering the use of CBC2 in

their networking protocol?

My advice would be: don’t use CBC2. It could be used if one is certain that your application
will in no way surface to the adversary which ciphertexts are valid and which are not. But
that kind of assurance is a lot to ask for; it would almost certainly be safer to switch to an
authenticated-encryption scheme.

Problem 18. Fix a blockcipher E : K × {0, 1}n → {0, 1}n and let CBCMACK(M) be the CBC MAC,

using EK , of a message M that is a positive multiple of n bits. We have seen that this construction is

not secure as a (variable-input-length) MAC.

18.1. Consider the construction CBCMAC2K K′(M) = CBCMACK(M)⊕K ′ where K ′ ∈ {0, 1}n. Show

that this is a bad MAC—that you can easily forge.

Here is a simple forging attack. First query CBCMAC2KK′(0n) to get T1 = EK(0n)⊕K ′. Next
query CBCMAC2KK′(0nT1) to get T2 = EK(EK(0n)⊕ T1)⊕K ′ = EK(K ′)⊕K ′. Observe that

CBCMAC2(0nT1T2) = EK(EK(K ′)⊕ T2)⊕K ′ = EK(K ′)⊕K ′ = T2 .

That is, T2 is the correct tag of 0nT1T2, so the adversary that outputs (0nT1T2, T2) forges with
advantage 1.

18.2. When strings x and y are strings with |x| > |y|, define x⊕ y = x⊕ 0|x|−|y|y. When x is a string

and n is a fixed value, define x10∗ as x10i for the smallest i ≥ 0 such that |x10i| is a multiple of n. Now

consider the construction CBCMAC3K K′(M) = CBCMACK(M ⊕K ′) when |M | is a positive multiple of

n; and CBCMAC3K K′(M) = CBCMACK(M10∗⊕K ′) otherwise. Here |K ′| = n. Show that CBCMAC3

is again a bad MAC—that you can easily forge.

Here is a simple forging attack. Ask the CBCMAC3 oracle the empty string and learn its MAC
T . Now output the pair (10n−1, T), which is an unqueried string, 10n−1, and the correct MAC
for it.

Problem 19. Fix a value n ≥ 1 and the finite field F having 2n points. Represent points in F by n-bit
strings in the usual way. Now consider the hash function H : K × ({0, 1}n)+ → {0, 1}n where a string
M = M1 · · ·Mm, for Mi ∈ {0, 1}n, hashes to

HK(M) = M1K1 + · · · + MmKm + Km+1 .

ps6-soln: Problem Set 6 Solutions 3

Here K = (K1,K2, . . .) is the key for the hash function, each Ki ∈ F, and all arithmetic is done in F. A

random key from K is an infinite list of n-bit strings, each uniformly and independently drawn.

19.1. Prove that H is ε-AU where ε = 2−n.

Let M = M1 · · ·Mm and M ′ = M ′
1 · · ·M ′

m′ be distinct messages, each a positive multiple of
blocks. We seek to bound Pr[HK(M) = HK(M ′)]. Suppose first that m ̸= m′, say, without loss
of generality, that m > m′. In this case,

Pr[HK(M) = HK(M ′)] = Pr[Km+1 = M1K1 + · · ·+MmKm +M ′
1K1 + · · ·+M ′

m′Km′ +K ′
m′+1]

= Pr[Km+1 = L]

where L = L(K1, . . . ,Km) is a random variable that’s independent of Km+1. This value, then,
is 2−n. On the other hand, suppose m = m′. Then, since M ̸= M ′, there must be some first
index i such that Mi ̸= M ′

i . Now

Pr[HK(M) = HK(M ′)] = Pr[M1K1 + · · ·+MmKm = M ′
1K1 + · · ·+M ′

mKm]

= Pr[(Mi +M ′
i)Ki = J]

= Pr[cKi = J]

= Pr[Ki = J/c]

where c ̸= 0 and J is a random variable that is independent of Ki. Thus this value is again
2−n.

19.2. Show H is not ε-AU, for a small ε, if you omit the last addend in the definition of the hash.

Without the final addend, we have that HK(0n) = HK(02n) for every K and hence the function
is 1-AU (the worst you can get).

19.3. Name a significant advantage of H and a significant disadvantage of H compared to the polynomial-

evaluation hash that I described in class.

The main advantage of H over the polynomial hash we covered in class is that its ε-value, the
probability of collision, doesn’t increase with increasing message lengths: it stays constant—and
optimal. You might also make the claim that H is more readily parallelizable than polynomial-
evaluation, which might make it faster to compute in some settings. The main disadvantage
of H over the polynomial hash we covered in class is that the key is unboundedly long (or, more
precisely, it is n bits longer than the length of the longest message you might have to process).

Note that the conventional computational work for the two hashes is about the same—one multi-
ply and one addition for each block of message, so computational complexity doesn’t differentiate
them.

Problem 20. Let E be an n-bit blockcipher. Find a string whose CBC MAC over E you can forge

without asking any queries. Explain.

4 Problem Set 6 Solutions

Let D be the smallest number such that every number less than or equal to 2n divides it. I claim
that we can forge the message M = 0nD using a tag of 0n. To see that the CBC MAC under E of
(0n)D is 0n, notice that whatever the length of the cycle C = (0n, EK(0n), EK(EK(0n)), . . . , 0n),
it is some number d ≤ 2n. When we process the string (0n)D using CBC MACE , we’re going
walk this d-cycle an integral number of times because d divides D. That is, we’ll go around the
cycle D/d times, ending where we started, at 0n.

