
ECS 127: Cryptography ps6
UC Davis — Phillip Rogaway 14 May 2024

Problem Set 6 – Dew 23 May 2024 at 11am

Problem 17. Fix a blockcipher E with an 8-byte (64-bit) blocksize. Consider the following
generalization of CBC to allow the encryption of arbitrary byte strings. Given a byte string M ,
let pad(M) be M followed by enough bytes to take you to the next multiple of eight bytes, where
the extra bytes are one of: 01, or 02 02, or 03 03 03, and so on, up to 08 08 08 08 08 08 08 08 (all
of these constants written in hexadecimal). Let CBC2 be the variant of CBC$ encryption that
encrypts M by applying CBC, over E, with a uniformly random IV, to pad(M).

The CBC2 method is specified in Internet Standard RFC 2040. Note that a CBC2 ciphertext
for M will have the form C = IV ∥ C ′ where |IV| = 64 and |C ′| is the least multiple of 64
exceeding |M |.
17.1. Do you think that CBC2 achieves “good” (at least birthday-bound) ind$-security when E
is a good PRP? Why or why not?

17.2. Write a careful fragment of pseudocode for an algorithm D to decrypt a byte string C
under CBC2. Have D(K,C) return the distinguished symbol ⊥ if it is provided an invalid
ciphertext; otherwise, it returns a byte string M .

17.3. Suppose an adversary is given an oracle, Valid, that, given a ciphertext C, returns the
bit “1” if C is valid, meaning D(K,C) ∈ {0, 1}∗, and returns the bit “0” if it is not, meaning
D(K,C) = ⊥. Show how to use the oracle to decipher a block Y = EK(X) for an arbitrary
eight-byte X. (Hint: all your queries to the Valid oracle will be 16 bytes, and I don’t mind if you make

hundreds or thousands of them.)

17.4. Show how to decrypt any ciphertext C = CBC2(K,M) given a Valid oracle.

17.5. What advice would you give to a security practitioner who was considering the use of
CBC2 in their networking protocol?

Problem 18. Fix a blockcipher E : K × {0, 1}n → {0, 1}n and let CBCMACK(M) be the
CBC MAC, using EK , of a message M that is a positive multiple of n bits. We have seen that
this construction is not secure as a (variable-input-length) MAC.

18.1. Consider the construction CBCMAC2KK′(M) = CBCMACK(M) ⊕ K ′ where K ′ ∈
{0, 1}n. Show that this is a bad MAC—that you can easily forge.

18.2. When strings x and y are strings with |x| > |y|, define x ⊕ y = x ⊕ 0|x|−|y|y. When x is
a string and n is a fixed value, define x10∗ as x10i for the smallest i ≥ 0 such that |x10i| is a
multiple of n. Now consider the construction CBCMAC3KK′(M) = CBCMACK(M⊕K ′) when
|M | is a positive multiple of n; and CBCMAC3KK′(M) = CBCMACK(M10∗ ⊕K ′) otherwise.
Here |K ′| = n. Show that CBCMAC3 is again a bad MAC—that you can easily forge.

Problem 19. Fix a value n ≥ 1 and the finite field F having 2n points. Represent points in F
by n-bit strings in the usual way. Now consider the hash function H : K× ({0, 1}n)+ → {0, 1}n
where a string M = M1 · · ·Mm, for Mi ∈ {0, 1}n, hashes to

HK(M) = M1K1 + · · · + MmKm + Km+1 .

2 Problem Set 6 – Dew 23 May 2024 at 11am

Here K = (K1,K2, . . .) is the key for the hash function, each Ki ∈ F, and all arithmetic is done
in F. A random key from K is an infinite list of n-bit strings, each uniformly and independently
drawn.

19.1. Prove that H is ε-AU where ε = 2−n.

19.2. Show H is not ε-AU, for a small ε, if you omit the last addend in the definition of the
hash.

19.3. Name a significant advantage of H and a significant disadvantage of H compared to the
polynomial-evaluation hash that I described in class.

Problem 20. Let E be an n-bit blockcipher. Find a string whose CBC MAC over E you can
forge without asking any queries. Explain.

