Problem Set 6 – Due Wed, 27 Feb 2019 at 12pm

Problem 17. Fix a blockcipher E with an 8-byte (64-bit) blocksize. Consider the following generalization of CBC to allow the encryption of arbitrary byte strings. Given a byte string M, let pad(M) be M followed by enough bytes to take you to the next multiple of eight bytes, where the extra bytes are either: 01, or 02 02, or 03 03 03, and so on, up to 08 08 08 08 08 08 08 08 (all of these constants written in hexadecimal). Let CBC2 be the variant of CBC\$ encryption that encrypts M by applying CBC, over E, with a random IV, to pad(M).

The CBC2 method is specified in Internet Standard RFC 2040. Note that a CBC2 ciphertext for M will have the form $C = IV \parallel C'$ where |IV| = 64 and |C'| is the least multiple of 64 exceeding |M|.

- 17.1. Do you believe that CBC2 achieves "good" (at least birthday-bound) ind\$-security when E is a good PRP? Why or why not?
- **17.2.** Write a careful fragment of pseudocode for an algorithm \mathcal{D} to decrypt a byte string C under CBC2. Have $\mathcal{D}(K,C)$ return the distinguished symbol \bot if it is provided an invalid ciphertext; otherwise, it returns a byte string M.
- 17.3. Suppose an adversary is given an oracle, Valid, that, given a ciphertext C, returns the bit "1" if C is valid, meaning $\mathcal{D}(K,C) \in \{0,1\}^*$, and returns the bit "0" if it is not, meaning $\mathcal{D}(K,C) = \bot$. Show how to use the oracle to decipher a block $Y = E_K(X)$ for an arbitrary eight-byte X. (Hint: all your queries to the Valid oracle will be 16 bytes, and I don't mind if you make hundreds or thousands of them.)
- 17.4. Show how to decrypt any ciphertext C = CBC2(K, M) given a Valid oracle.
- 17.5. Is CBC2 CCA secure?
- **17.6.** What advice would you give to security practitioners who were considering the use of CBC2 in their networking protocol?
- **Problem 18.** Fix a blockcipher $E: \mathcal{K} \times \{0,1\}^n \to \{0,1\}^n$ and let $CBCMAC_K(M)$ be the CBC MAC, using E_K , of a message M that is a positive multiple of n bits. We have seen that this construction is not secure as a (variable-input-length) MAC.
- **18.1.** Consider the construction $CBCMAC2_{KK'}(M) = CBCMAC_K(M) \oplus K'$ where $K' \in \{0,1\}^n$. Show that this is a bad MAC—that you can easily forge.
- **18.2.** When strings x and y are strings with |x| > |y|, define $x \oplus y = x \oplus 0^{|x|-|y|}y$. When x is a string and n is a fixed value, define $x10^*$ as $x10^i$ for the smallest $i \ge 0$ such that $|x10^i|$ is a multiple of n. Now consider the construction $\operatorname{CBCMAC3}_{KK'}(M) = \operatorname{CBCMAC}_K(M \oplus K')$ when |M| is a positive multiple of n; and $\operatorname{CBCMAC3}_{KK'}(M) = \operatorname{CBCMAC}_K(M10^* \oplus K')$ otherwise. Here |K'| = n. Show that $\operatorname{CBCMAC3}_i$ is a bad MAC —that you can easily forge.

Problem 19. Fix a value $n \ge 1$ and the finite field \mathbb{F} having 2^n points. Represent points in \mathbb{F} by *n*-bit strings in the usual way. Now consider the hash function $H : \mathcal{K} \times (\{0,1\}^n)^+ \to \{0,1\}^n$ where a string $M = M_1 \cdots M_m$, for $M_i \in \{0,1\}^n$, hashes to

$$H_K(M) = M_1 K_1 + \cdots + M_m K_m + K_{m+1}.$$

Here $K = (K_1, K_2, ...)$ is the key for the hash function, each $K_i \in \mathbb{F}$, and all arithmetic is done in \mathbb{F} . A random key from K is an infinite list of n-bit strings, each uniformly and independently drawn.

- **19.1.** Prove that H is ε -AU where $\varepsilon = 2^{-n}$.
- **19.2.** Show H is not ε -AU, for a small ε , if you omit the last addend in the definition of the hash.
- 19.3. Name one significant advantage of H and one significant disadvantage of H compared to the polynomial-evaluation hash that I described in class.